Skip Navigation

NIH VideoCasting

CIT can broadcast your seminar, conference or meeting live to a world-wide audience over the Internet as a real-time streaming video. The event can be recorded and made available for viewers to watch at their convenience as an on-demand video or a downloadable file. CIT can also broadcast NIH-only or HHS-only content.

Structural and Mechanistic Diversity of ABC Transporters

Loading video...

292 Views  
   
Air date: Wednesday, March 5, 2014, 3:00:00 PM
Time displayed is Eastern Time, Washington DC Local
Views: Total views: 292, (85 Live, 207 On-demand)
Category: WALS - Wednesday Afternoon Lectures
Runtime: 00:57:01
Description: Wednesday Afternoon Lecture Series

ATP Binding Cassette (ABC) transporters constitute a ubiquitous superfamily of integral membrane proteins responsible for the ATP powered membrane translocation of a wide variety of substrates. The highly conserved ABC domains defining the superfamily provide the nucleotide-powered engine that drives transport. In contrast, the transmembrane domains creating the translocation pathway are more variable, with three distinct folds currently recognized. Structural analyses of the high affinity methionine MetNI importer and of a bacterial homologue of the mitochondrial Atm1 exporter will be discussed within the mechanistic framework of the alternating access model. The interconversion of outward and inward facing conformations of the translocation pathway is coupled to the switching between open and closed interfaces of the ABC subunits that are associated with distinct nucleotide states. As observed for MetNI, additional domains may be present that can regulate transport activity. Building on this qualitative molecular framework for deciphering the transport cycle, an important goal is to develop quantitative models that detail the kinetic and molecular mechanisms by which ABC transporters utilize the binding and hydrolysis of ATP to power substrate translocation.

For more information go to http://wals.od.nih.gov
Debug: Show Debug
NLM Title: Structural and mechanistic diversity of ABC transporters / Douglas C. Rees.
Author: Rees, Douglas C.
National Institutes of Health (U.S.),
Publisher:
Abstract: (CIT): ATP Binding Cassette (ABC) transporters constitute a ubiquitous superfamily of integral membrane proteins responsible for the ATP powered membrane translocation of a wide variety of substrates. The highly conserved ABC domains defining the superfamily provide the nucleotide-powered engine that drives transport. In contrast, the transmembrane domains creating the translocation pathway are more variable, with three distinct folds currently recognized. Structural analyses of the high affinity methionine MetNI importer and of a bacterial homologue of the mitochondrial Atm1 exporter will be discussed within the mechanistic framework of the alternating access model. The interconversion of outward and inward facing conformations of the translocation pathway is coupled to the switching between open and closed interfaces of the ABC subunits that are associated with distinct nucleotide states. As observed for MetNI, additional domains may be present that can regulate transport activity. Building on this qualitative molecular framework for deciphering the transport cycle, an important goal is to develop quantitative models that detail the kinetic and molecular mechanisms by which ABC transporters utilize the binding and hydrolysis of ATP to power substrate translocation.
Subjects: ATP-Binding Cassette Transporters--physiology
Publication Types: Lecture
Webcast
Download: To download this event, select one of the available bitrates:
[64k]  [150k]  [240k]  [440k]  [740k]  [1040k]  [1240k]  [1440k]  [1840k]    How to download a Videocast
Caption Text: Download Caption File
NLM Classification: QU 55.7
NLM ID: 101629952
CIT Live ID: 13820
Permanent link: https://videocast.nih.gov/watch=13820