Skip Navigation

NIH VideoCasting

CIT can broadcast your seminar, conference or meeting live to a world-wide audience over the Internet as a real-time streaming video. The event can be recorded and made available for viewers to watch at their convenience as an on-demand video or a downloadable file. CIT can also broadcast NIH-only or HHS-only content.

The microbiota as instructor and arbiter of immune responses in health and disease

Loading video...

588 Views  
   
Air date: Wednesday, February 22, 2017, 3:00:00 PM
Time displayed is Eastern Time, Washington DC Local
Views: Total views: 588, (243 Live, 345 On-demand)
Category: WALS - Wednesday Afternoon Lectures
Runtime: 01:07:59
Description: NIH Director's Wednesday Afternoon Lecture Series

The vertebrate intestinal tract is colonized by hundreds of species of bacteria that outnumber the total cells in the host, yet must be compartmentalized and tolerated to prevent invasive growth and harmful inflammatory responses. A key function of commensal microbes is to contribute to the adaptive immune repertoire and to diverse lymphocyte effector functions. T cell responses against non-invasive commensals contribute to shaping the repertoire of effector/memory and regulatory T cells. How T cells elicited by commensal bacteria can influence autoimmunity is a central question that remains unsolved. The Littman Lab studies the antigenic specificity of microbiota-induced T cells and the mechanisms by which their functions are acquired upon interaction with distinct commensal species. His lab finds that Th17 cells, which are central to mucosal barrier defense but also participate in autoimmune disease, are induced by specific constituents of the microbiota, and acquire effector function only after additional exposure to endogenous adjuvants, such as the serum amyloid A proteins. The lab's studies in mice are not only relevant for human autoimmune diseases, many of which have Th17 cell involvement, but may also provide insights into how commensal microbe-specific T cell responses could be harnessed for mucosal vaccination and cancer immunotherapy.

For more information go to https://oir.nih.gov/wals/2016-2017
Debug: Show Debug
NLM Title: The microbiota as instructor and arbiter of immune responses in health and disease / Dan R. Littman.
Author: Littman, D R.
National Institutes of Health (U.S.),
Publisher:
Abstract: (CIT): NIH Director's Wednesday Afternoon Lecture Series The vertebrate intestinal tract is colonized by hundreds of species of bacteria that outnumber the total cells in the host, yet must be compartmentalized and tolerated to prevent invasive growth and harmful inflammatory responses. A key function of commensal microbes is to contribute to the adaptive immune repertoire and to diverse lymphocyte effector functions. T cell responses against non-invasive commensals contribute to shaping the repertoire of effector/memory and regulatory T cells. How T cells elicited by commensal bacteria can influence autoimmunity is a central question that remains unsolved. The Littman Lab studies the antigenic specificity of microbiota-induced T cells and the mechanisms by which their functions are acquired upon interaction with distinct commensal species. His lab finds that Th17 cells, which are central to mucosal barrier defense but also participate in autoimmune disease, are induced by specific constituents of the microbiota, and acquire effector function only after additional exposure to endogenous adjuvants, such as the serum amyloid A proteins. The lab's studies in mice are not only relevant for human autoimmune diseases, many of which have Th17 cell involvement, but may also provide insights into how commensal microbe-specific T cell responses could be harnessed for mucosal vaccination and cancer immunotherapy.
Subjects: Microbiota--immunology
Publication Types: Lecture
Webcast
Download: To download this event, select one of the available bitrates:
[64k]  [150k]  [240k]  [440k]  [740k]  [1040k]  [1240k]  [1440k]  [1840k]    How to download a Videocast
Caption Text: Download Caption File
NLM Classification: QW 4
NLM ID: 101702173
CIT Live ID: 21819
Permanent link: https://videocast.nih.gov/watch=21819