A Day with the FDA: CDER and NIAID Working Together
Friday, July 27, 2007 ★ 8:30am – 4:30pm
NIH, Building 10, Lipsett Amphitheatre

Schedule of Events:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Opening Remarks
Deputy Director, Division of Clinical Research, NIAID
Director, Clinical Pharmacology Program, Office of Clinical Research Training and Medical Education, CC
Deputy Center Director, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA)</td>
<td>Jorge Tavel, MD
Juan Lertora, MD, PhD
Douglas Throckmorton, MD</td>
</tr>
<tr>
<td>8:50</td>
<td>How the wheels of CDER turn: Structure and Function</td>
<td>Doug Throckmorton, MD
Deputy Center Director, CDER</td>
</tr>
<tr>
<td>9:20</td>
<td>Safety and Toxicology Studies
Associate Director for Pharmacology and Toxicology, CDER</td>
<td>David Jacobson-Kram, PhD, DABT</td>
</tr>
<tr>
<td>10:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:20</td>
<td>Emergency Preparedness, Medical Countermeasures, and the Role of The Animal Rule
Deputy Director/ CDER Emergency Coordinator, Office of Counter-Terrorism & Emergency Coordination (OCTEC)</td>
<td>Brad Leissa, MD</td>
</tr>
<tr>
<td>11:00</td>
<td>The IND Process: A Regulatory Perspective
Associate Director for Regulatory Affairs, Office of Antimicrobial Products, CDER</td>
<td>Dave Roeder, MS</td>
</tr>
<tr>
<td>11:45</td>
<td>Questions/Answers</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch (participants eat lunch on their own)</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Clinical Trial Design and Statistical Issues
Director, Office of Biostatistics, Office of Translational Sciences, CDER</td>
<td>Bob O’Neill, PhD</td>
</tr>
<tr>
<td>1:40</td>
<td>Clinical Drug Review Process/Issues
Director, Division of Pulmonary and Allergy Products, CDER</td>
<td>Badrul Chowdhury, MD, PhD</td>
</tr>
<tr>
<td>2:20</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>2:40</td>
<td>DSI’s Role in Bioresearch Monitoring/FDA Expectations of Clinical Investigators
Medical Officer, Division of Scientific Investigations, Office of Compliance, CDER</td>
<td>Tejashri Purohit-Sheth, MD</td>
</tr>
<tr>
<td>3:30</td>
<td>Pharmaceutical Quality Assessment
Director, Office of New Drug Quality, CDER</td>
<td>Moheb Nasr, PhD</td>
</tr>
<tr>
<td>4:10</td>
<td>Closing Remarks: Contacts and Answers to your questions
Director, Office of Translational Sciences, CDER</td>
<td>Shirley Murphy, M.D.</td>
</tr>
</tbody>
</table>
SPEAKER BIOGRAPHIES

Badrul Chowdhury, MD, PhD, Director, Division of Pulmonary and Allergy Products, CDER
Dr. Badrul A. Chowdhury is the Director, Division of Pulmonary and Allergy Products, Center for Drug Evaluation and Research, US Food and Drug Administration. Dr. Chowdhury is trained and board certified in Internal Medicine, and in Allergy and Immunology, and also has a PhD in Immunology from the Memorial University of Newfound, St. John’s, Canada. He completed Residency training in Internal Medicine from Wayne State University School of Medicine, Detroit, Michigan in June 1991, and Fellowship training in Allergy and Immunology from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland in June 1995. From July 1995 to July 1997 Dr. Chowdhury was an Assistant Professor of Medicine at the University of Tennessee College of Medicine, Memphis, Tennessee. Dr. Chowdhury joined the FDA in August 1997. Dr. Chowdhury has published many original articles, reviews, and book chapters.

David Jacobson-Kram, PhD, DABT, Associate Director for Pharmacology and Toxicology, CDER
David Jacobson-Kram received his Ph.D. in embryology from the University of Connecticut in 1976. Between 1976 and 1979, Dr. Jacobson-Kram served as a staff fellow and then a senior staff fellow at the National Institute on Aging. After leaving N.I.H., Dr. Jacobson-Kram joined the faculty of George Washington University School of Medicine (1979 - 1984) and Johns Hopkins University Oncology Center (1984 - 1990). During this same period he served, on a part-time basis, as a geneticist in the Office of Toxic Substances at the Environmental Protection Agency and as Acting Branch Chief in EPA’s Office of Research and Development.

Dr. Jacobson-Kram joined Microbiological Associates in 1988 as director of the Genetic Toxicology Division. In 1997 the company changed its name to BioReliance and his responsibilities were expanded to include oversight of the Mammalian Toxicology Program and the Laboratory Animal Health Program. Dr. Jacobson-Kram served as the VP of the Toxicology and Laboratory Animal Health Division until April, 2003. Currently, he serves as the Associate Director of Pharmacology and Toxicology in FDA’s Office of New Drugs. Over the past twenty five years he has served as principal and co-principal investigator on several N.I.H. grants and government contracts. Since 1976 Dr. Jacobson-Kram has published, 58 original articles in peer reviewed journals, and 42 review articles or book chapters. The majority of these publications deal which methods and issues in genetic and molecular toxicology.

Dr. Jacobson-Kram has served as council member, treasurer and chairman of the Genetic Toxicology Association, executive council member to the Environmental Mutagen Society, Editor of Cell Biology and Toxicology, President of National Capital Area Chapter of the SOT and as a member of N.I.H. special study sections. In 1996 he became a Diplomate of the American Board of Toxicology (DABT).

Brad Leissa, MD, Deputy Director/ CDER Emergency Coordinator, Office of Counter-Terrorism & Emergency Coordination (OCTEC)
Brad Leissa received his medical degree from The Ohio State University. He received postgraduate training in internal medicine and pediatrics at The Ohio State University Hospitals. He went on to receive subspecialty training in pediatric infectious diseases from George Washington University and the Children’s National Medical Center in Washington, DC. He began his career at FDA back in 1989 as a medical officer with a focus on anti-infective drug development in the Center for Drug Evaluation and Research (CDER). During the October 2001 anthrax attacks, Dr. Leissa was temporarily assigned to the Secretary’s Bioterrorism Command Center at the Department of Health and Human Services. Since then he has continued to work on medical countermeasure development at FDA. He currently holds the position of Deputy Director in CDER’s Office of Counter-Terrorism and Emergency Coordination (OCTEC).
Shirley Murphy, MD, Director, Office of Translational Sciences, CDER
Shirley Murphy, M.D. is currently the Director of the Office Translational Sciences in the Center for Drug Evaluation and Research at the Food and Drug Administration. Dr. Murphy joined the FDA in 2002 to start the new Division of Pediatric Drug Development and then moved to be Deputy Director of the Office of Counter-Terrorism and Pediatric Drug Development. Dr. Murphy is a board certified Pediatrician, Pediatric Pulmonologist, and Allergist/Immunologist who has had a career-long research interest in medications for children, particularly those with asthma. From 1998-2002 Dr. Murphy was a vice-president of the pharmaceutical company, GlaxoSmithKline. Dr. Murphy also served on the faculty of the University of New Mexico School of Medicine and College of Pharmacy for 20 years, holding the positions of Director of the Division of Pulmonary Medicine and Chair of the Department of Pediatrics. Dr. Murphy has published numerous scientific articles, reviews, book chapters and books on asthma with a specific emphasis on medications for acute and chronic asthma.

Dr. Murphy served on the National Heart, Lung and Blood Institute’s Asthma Expert Panel I and Chaired the Expert Panel 11, which produced the National Guidelines for the Diagnosis and Management of Asthma. In addition, she served as Chair of the First National Conference on Asthma sponsored by the National heart, Lung and Blood Institute and also chaired the FDA’s Pulmonary and Allergy Advisory Committee.

Moheb Nasr, PhD, Director, Office of New Drug Quality, CDER
Dr. Moheb Nasr is the Director of the Office of New Drug Quality Assessment (ONDQA), Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA). ONDQA is responsible for quality assessments (pre and post marketing) of new drugs regulated by CDER. Dr. Nasr obtained his Ph.D. degree in Chemistry at the University of Minnesota in Minneapolis. Dr. Nasr holds a B.S. degree in Pharmacy and a Master’s degree in Pharmaceutical Analysis, both from Cairo University, Egypt. After a distinguished academic career, Dr. Nasr joined the FDA in 1990, and assumed his current position in June, 2003. Dr. Nasr is leading the restructuring of the pharmaceutical quality assessment program at the FDA. Several new concepts, initiatives, and programs were developed under his leadership; including the establishment of the new Pharmaceutical Quality Assessment System (PQAS), CMC Pilot Program, CMC Regulatory Agreement, and many others. Dr. Nasr serves as the FDA lead at the International Conference on Harmonization (ICH) Q8 Expert Working Group. Dr. Nasr is a member of FDA’s Council on Pharmaceutical Quality.

Bob O'Neill, PhD, Director, Office of Biostatistics, Office of Translational Sciences, CDER
Dr. O'Neill is the Director of the Office of Biostatistics (OB) in Office of Translational Sciences in the Center for Drug Evaluation and Research (CDER), Food and Drug Administration. His Office provides biostatistical and scientific computational leadership and support to all programs of CDER. Prior to October, 1998 he was Director of the Office of Epidemiology and Biostatistics responsible also for the post-market safety surveillance of new drugs. He began his FDA career in the Division of Biometrics in 1971 as a statistical reviewer of New Drug Applications in the former Bureau of Drugs. He has held successively more responsible positions in the Division of Biometrics, including Group Leader, Branch Chief, Deputy Director, and Director, a position he held for ten years before assuming his role as Office Director.

Dr. O'Neill holds an A.B. degree in mathematics from the College of the Holy Cross, and a Ph.D. in mathematical statistics and biometry from Catholic University of America and In 1989-1990, Dr. O'Neill was a visiting professor at the Department of Research, University Medical School, Basel, Switzerland where he developed and presented numerous lectures and created a course series "Topics in Therapy Evaluation and Review (TITER)" for European pharmaceutical scientists, which was the model for the European Course In Pharmaceutical Medicine (ECPM), a degree granting graduate program. He is a fellow of the American Statistical Association (1985), a member of several professional societies, a past Member of the Board of Directors of the Society for Clinical Trials, the 2002 recipient of the Marvin Zelen Leadership Award in Statistical Science and the 2004 Lowell Reed Lecture Awardee from the American Public Health Association. He has received numerous FDA and HHS awards, including the Secretary’s Distinguished Service Award (1997) for developing regulations to protect the nation’s children from cigarette smoking. He has published many articles and book chapters.

Dr. O'Neill was the FDA topic leader on two ICH guidance documents, E5 "Ethnic Factors in the Acceptance of Foreign Clinical Data" and E9 "Statistical Principles in Clinical Trials'.
Tejashri Purohit-Sheth, MD, Medical Officer, Division of Scientific Investigations, Office of Compliance, CDER
Dr. Tejashri Purohit-Sheth currently works as a medical officer at the Food and Drug Administration, Center for Drug Evaluation and Research, Division of Scientific Investigations. She previously worked in the Division of Pulmonary and Allergy Products, where she used her medical training in Allergy/Immunology in the evaluation of the safety and efficacy of drugs for US approval.

She started her active duty service in the United States Navy. She was a Health Professions Scholarship Program recipient, whereby medical school training was paid by the US Navy. She completed her Internal Medicine Training at Portsmouth Naval Hospital, followed by her fellowship in Allergy/Immunology at Walter Reed Army Medical Center. After completion of her training, she went to become Service Chief of the Allergy/Immunology Service at National Naval Medical Center.

At the end of her obligated Navy service, she transferred her commission to the Public Health Service.

Dave Roeder, MS, Associate Director for Regulatory Affairs, Office of Antimicrobial Products, CDER
Mr. Roeder received a B.S. degree in biology at Kansas State University, followed by a M.S. in plant pathology at the University of Maryland. He worked at Meloy Laboratories in Springfield, VA and at the American Red Cross Holland Laboratories for several years prior to joining the FDA in 1990. While at the FDA, he served for ten years as a Regulatory Project Manager in the Division of Cardio-Renal Drug Products, where he managed INDs and NDAs for the calcium channel blockers. For the past seven years, he has served as the Associate Director for Regulatory Affairs in the Office of Antimicrobial Products (formerly Office of Drug Evaluation IV).

Doug Throckmorton, MD, Deputy Center Director, CDER
Dr. Douglas Throckmorton is the Deputy Director in the Center for Drug Evaluation and Research (CDER) at the U.S. Food and Drug Administration (FDA). In this role, he shares responsibility for overseeing the regulation of research, development, manufacture and marketing of prescription, over-the-counter and generic drugs in the US. From aspirin to cancer treatments, CDER works to ensure that the benefits of approved drug products outweigh their known risks.

Dr. Throckmorton was founding chair of CDER’s Drug Safety Oversight Board and served until recently as the CDER liaison to the FDA human subjects research review board. He currently serves on the newly-constituted FDA Bioinformatics Board, and is the chair of CDER’s Research Coordinating Committee, the group that helps to manage and forward the scientific mission of CDER.

Dr. Throckmorton began his career at the FDA in the Division of Cardio-Renal Drug Products in 1997, first as a medical reviewer, then as Deputy Division Director and from 2002-05, as Division Director.

Dr. Throckmorton is Board-certified in Internal Medicine and Nephrology, having received his training at the University of Nebraska Medical School, Case Western Reserve University and Yale University. Prior to coming to the FDA, he practiced medicine at the Medical College of Georgia in Augusta, Georgia.
Opening Remarks

Jorge Tavel, MD
Deputy Director, Division of Clinical Research, NIAID

Juan Lertora, MD, PhD
Director, Clinical Pharmacology Program, Office of Clinical Research Training and Medical Education, CC

Douglas Throckmorton, MD
Deputy Center Director, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA)
NOTES PAGE- How the wheels of CDER turn: Structure and Function
Doug Throckmorton, MD
Deputy Center Director, CDER
The Wheels of CDER

Protecting and Advancing the Public Health

Douglas C. Throckmorton, MD
Deputy Director, CDER, FDA

July 2007

FDA’s Mission is to ensure that...

- Foods are safe, wholesome, and properly labeled
- Human drugs and vaccines are safe and effective
- Blood used for transfusions and blood products are safe & in adequate supply
- Medical devices are safe & effective
- Transplanted tissues are safe & effective
- Animal drugs and medicated feeds are safe & effective, and food from treated animals is safe for human consumption
- Radiation-emitting electronic products are safe
- Cosmetics are safe & properly labeled

CDER Role in US Healthcare

FDA evaluates benefits for the population
Provider evaluates benefits/risks for a patient
Patient evaluates benefits/risks in terms of personal values

CDER

- Mission
 – Ensure Americans have access to safe and effective drug products
- Center Director
 – RADM Steven Galson, MD, MPH

Human Drug Program
Under CDER purview

- Medicines
 - Prescription drugs
 - Innovator – “Brand name” – drugs
 - Generic drugs
 - Over-the-Counter drugs
- Other products that include “drugs”
 - e.g., fluoride toothpastes, antiperspirants, dandruff shampoos, sunscreens
- Shared responsibility for combination products that contain drugs
 - e.g., drug coated devices

CDER Mission Critical Business Processes

- Pre-Market Product Review (Pre-approval processes)
 - Improve Public Health By Access And Availability Of New Products
- Post-Market Drug Surveillance (Product Surveillance; Consumer/Patient Safety)
 - Maximize Benefit/ Minimize Harm From Marketed Products
- Product Safety & Compliance (Compliance/Enforcement)
 - Minimize Harm due to Low-Quality Products

Pre-Market Product Review

New Drug Review
- Investigational New Drug (IND) Review
 - Process by which a sponsor (company) advances to the next stage of drug development known as clinical trials
 - Animal Pharmacology and Toxicology Studies
 - Manufacturing Information
 - Clinical Protocols and Investigator Information
- New Drug Application (NDA)
 - Formal application to the FDA for approval of a new drug
- Biological License Application (BLA)
 - Transfer of applications from CBER in FY 2002 for medicines such as:
 - Monoclonal antibodies, cytokines, growth factors, enzymes, other therapeutic immunotherapies

Priority applications represent drugs offering significant advances over existing treatments

CDER Review Productivity

Generic Drug Review Process
- Abbreviated New Drug Application (ANDA)
 - Application for a generic version of a brand name drug
 - Generic companies are not required to repeat the extensive clinical trials required for brand name drugs
 - Must show “Bioequivalence”
 - Prove that the rate and extent of absorption of the active ingredient is the same
The Wheels of CDER

CDER Review Productivity

Generic Drug Approvals

Median Times, Approvals

17.0 15.7 16.4 17.5 18.0

23.0

18.6 18.1 19.3 18.2 18.3

380 371 344 263 212

273 225 186 244 234

Submissions have reached over 780 already in FY 2005 increases attributed in large part to expiring innovator patents

ANDA Submissions

Calendar year

Number of generic approvals

Approvals

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

Submissions = workload in subsequent years

CDER Review Productivity

OTC New Approvals & New Uses

Calendar year

New approvals or Rx-to-OTC switches

New uses

Office of New Drugs (OND)

Office of Non-prescription Drug Products (ONP)

Pre-Approval Process

• Over The Counter (OTC) Drug Review
 – OTC Monographs
 • Published ‘recipes’ for acceptable ingredients, doses, formulations, and consumer labeling

Pre-Approval Process - Support

• Drug Promotion Review
 – Ensure that drug advertisements and other promotional materials are truthful and balanced
 • Before drug companies launch marketing campaigns to:
 – Introduce new drugs
 – Introduce new indications or dosages for approved drugs
 • After a campaign is initiated if issues of truthfulness and balance arise

Post-Market Drug Surveillance

• Product Surveillance Functions
 – Process Adverse Event Reports
 • Identify emerging safety signals, analyze data, communicate findings
 – Medication Errors
 – Manage Drug Shortages
 – Perform Population Studies
Process Adverse Event Reports
- Direct reports in Medwatch
- 15-day Expedited (serious)
- Mfg periodic (less serious)

Post-Marketing Adverse Event Reports
- Number of annual reports.

Compliance/Enforcement
- Compliance/Enforcement
 - Enforce Quality Requirements
 - Inspect Facilities
 - Evaluate Imports/Experts
 - Manage Registration and Listing
 - Perform Internet Surveillance

Post-Marketing Adverse Event Reports
- 2006: 464,068
- 2005: 471,679
- 2004: 423,031
- 2003: 370,898
- 2002: 322,691
- 2001: 285,107
- 2000: 266,978
- 1999: 278,266
- 1998: 247,607
- 1997: 212,978
- 1996: 191,865

Drug Recalls
- Fiscal year: 1996-2006
- Number by year.

Cross-Cutting Offices
- Office of Translational Sciences
 - Lead implementation of the Critical Path Initiative for CDER
 - Interactions with outside groups
 - Oversee research and science in CDER
 - Oversee human subjects protection in CDER
 - Cross-cutting disciplines
 - Office of Clinical Pharmacology
 - Office of Biostatistics

Cross-Cutting Offices
- Counter Terrorism
 - Identify, prepare for, and respond to
 - Biological, chemical, radiological/nuclear threats and incidents
 - Expand the availability of safe, effective medical countermeasures (MCMs)
 - For special populations (pregnant women, infants, elderly)
 - Frequent interaction with CDC’s Strategic National Stockpile (SNS)
 - Interacts in committees to facilitate development of MCMs and to provide recommendations for acquisition of products

Cross-Cutting Offices
- Controlled Substances Staff
 - Assess new drugs for their abuse liability
 - Make recommendations (with NIDA) on scheduling and risk management interventions of controlled substances
 - Interacts with multiple outside groups on drug abuse issues, both domestic and international
 - NIDA
 - SAMHSA
 - CDC
 - DEA
 - HHS
The Wheels of CDER

Support Functions

- **Support**
 - Manage Partnerships (International, Federal, State, Local Outreach)
 - Develop, Publish Industry Guidance
 - Draft Regulations, Internal Procedures
 - Provide Stakeholder Outreach
 - Manage Correspondence
 - Provide Internal Training and Professional Development
 - Perform Advisory Committee Meetings
 - Manage Program Planning and Evaluation
 - Process Regulatory Documents

Sum-up: The Wheels at CDER

- CDER is entrusted with a huge set of critical tasks to accomplish for the US
- CDER has a clear mission, based on those tasks, to guide us
- CDER is organized to accomplish that mission

However

- CDER cannot accomplish everything alone: collaboration with outside groups is essential to continued success

Conclusion

- Understanding the processes at CDER will help with collaboration
 - Ask until you get the answers to your questions
- Today's healthcare environment requires that all of us question the assumptions we've used to guide our process, and that we be ready to change if those assumptions are no longer justified

Questions?

- douglas.throckmorton@fda.hhs.gov
NOTES PAGE- Safety and Toxicology Studies
David Jacobson-Kram, PhD, DABT
Associate Director for Pharmacology and Toxicology, CDER
Safety and Toxicity Studies

A Day with the FDA: CDER and NIAID Working Together
Safety and Toxicology Studies

July 27, 2007
David Jacobson-Kram, Ph.D., DABT
Office of New Drugs
Center for Drug Evaluation and Research
U.S. F.D.A.

Drug Development: role of nonclinical studies

- Overview of how drugs are developed
- Current challenges
- Preclinical studies
- Genetic toxicology and carcinogenicity testing
- The future

The Future of Pharmaceuticals

- Everyone’s DNA sequence will be on file in their computer
- Illnesses diagnosed in real time from a drop of blood
- Drugs and dosages custom designed based on individual genetic polymorphisms, age, sex, weight etc

Combinatorial chemistry, thousands of chemical entities

- High throughput in vitro screening, dozens of candidates
- Animal models, efficacy and safety, handful of candidates
- Phase 1 clinical trial, one drug

Drug Development Paradigm

Research & Discovery → Clinical Trials → Review Process

- Preclinical Testing → IND → Phase 1 → Phase 2 → Phase 3 → NDA → Phase 4

- Laboratory studies in vitro studies
- Animal studies
- Evaluate toxicology, show biological activity of disease targets and develop formulations

- Assess safety and adverse reactions
- Confirm mechanisms, monitor adverse reactions from big trial scale
- Review process and approval
- Additional testing required by FDA

Realities of Drug Development Today

- NME (new molecular entity) development = high risk and cost
 - Extremely high failure rate before IND (investigational new drug)
 - NME IND = NDA (new drug application) <20% of time
 - >50% failure rate in Phase 3 either for lack of efficacy or toxicity
 - Decreased NME NDAs despite increased INDs
 - Cost per NME approved estimated at >$800M
Safety and Toxicity Studies

Why the decline in new drugs?

- "Low hanging fruit" has been picked.
- Economics, if it’s not a blockbuster, may not worth developing.
- Mergers and acquisitions in pharmaceutical industry.
- We may be becoming more risk averse, aspirin might not be approved in today's environment.
- Major diseases with unmet needs are complex and multigenic, e.g., cancer, heart disease, diabetes, Alzheimer's.

Why do we do ask for these studies?

- Determine whether it is safe to put drug candidate into humans
- Determine what constitutes an initial safe dose for human clinical trials
- Help determine a safe stopping dose
- Identify dose limiting toxicities (what should be monitored in clinical trials)
- Assess potential toxicities that cannot be identified in clinical trials

Types of preclinical and nonclinical tests

- Pharmacology (mechanistic and animal models, done in discovery, nonGLP)
- Safety pharmacology
- General toxicology
- Genetic toxicology
- Pharmacokinetics
- ADME (absorption, distribution, metabolism and excretion)
- Reproductive toxicology
- Carcinogenicity
- Special studies (e.g. juvenile)

CD28 Monoclonal Trial in UK

- No evidence of contamination of the product.
- Conduct of the trial appeared to have followed the protocol, e.g., no dosing errors.
- Nothing in the preclinical data predicted the overwhelming systemic reaction to the antibody. Findings of lymph node enlargement in the monkeys, but the monkeys did not demonstrate the toxicological response seen in humans.
- Dose in humans was 1/160 of the NOAEL in monkeys, so it was well within accepted safety margins.
- Adverse reaction considered to be a "cytokine" storm that was triggered by the antibody and not predicted by the animal testing.

BBC NEWS

March 16, 2006

Two drug test men still critical

Two men who fell seriously ill following a clinical drugs trial remain in a critical condition but four others are showing signs of improvement.

All six are still in intensive care in Northwick Park Hospital, north-west London, after falling ill on Monday. TeGenero, which manufactures the anti-inflammatory drug, says it has apologised to the men's families. Scotland Yard said officers are talking to the Medicines and Healthcare products Regulatory Agency and doctors. TeGenero described the reactions as "shocking developments" and said the new medicine had showed no signs of problems in earlier tests.
Safety and Toxicity Studies

What toxicities cannot be identified in clinical trials?

- Teratogenicity: don’t want to deliberately expose pregnant women
- Carcinogenicity: long latency period and insensitivity of epidemiological studies preclude identification of this adverse effect
- Long term toxicities

Nonmonitorable toxicities: teratogenicity, e.g., thalidomide

- Prescribed to pregnant women for nausea and insomnia.
- Resulted in over 10,000 births with severe limb malformations.
- Link between exposure and adverse effects was possible because of the potency of the drug and relatively short time period between exposure and manifestation of effects.

Nonmonitorable effects: carcinogenesis, diethylstilbestrol (DES)

- Prescribed to pregnant women to maintain pregnancies.
- Increased risk (1 in 1000) for clear cell adenomas of the vagina and cervix in female offspring.
- Link between exposure and risk could be made because of the rarity of tumor type. If exposure increased risk for a common cancer, might not have been detected.

What preclinical safety data are required prior to giving a new chemical to human beings for the first time – and why

- Most phase 1 studies are performed in healthy volunteers. No risk vs. benefit calculation, only risk assessment.

Preclinical studies define potential toxicities

- What is initial safe starting dose?
- What is a safe stopping dose?
- What organs/systems are at risk?
- Are toxicities monitorable in the clinic?
- Are toxicities reversible?
- Is the chemical potentially carcinogenic?
Safety and Toxicity Studies

Minimal data set to begin a phase 1 clinical trial in healthy volunteers:
- Toxicity studies in two species (rat, dog for small molecules, often nonhuman primate for biologics) with the highest dose demonstrating a “maximum tolerated dose” (MTD) and a lower dose demonstrating a “no adverse effect level” (NOAEL).
- Repeat dose toxicity study of 14 to 28 days in used most commonly.

Typical endpoints in toxicology study: in-life:
- Clinical signs, behavior
- Food consumption
- Body weights
- Clinical pathology (in larger species)

Typical endpoints in toxicology study: post-life:
- Macroscopic observation at necropsy
- Organ weights
- Clinical pathology
 - Hematology
 - Clinical chemistries
- Histopathology, all organs
- Toxicokinetics

Safety pharmacology:
- Cardiovascular (non rodent)
 - Blood pressure
 - Heart rate
 - ECGs
 - Rhythm and morphology
 - Arrhythmia analysis
 - Interval analysis including QT interval calculation
- CNS (rodent functional observation battery, Irwin test)
 - Spontaneous locomotor activity
 - Motor coordination
 - Proconvulsive effects
 - Analgesic effects
- Pulmonary (rodent, plethysmography)
 - Minute volume
 - Tidal volume
 - Respiratory rate

Genetic toxicology:
- Bacterial reverse mutation assay (Ames test, measures induction of point mutations e.g. base substitution, frame shifts)
- In vitro assay for chromosomal damage in cultured mammalian cells (metaphase cell analysis or mouse lymphoma gene mutation assay).
- In vivo test for chromosomal damage (rodent micronucleus test, not required but often performed).
Safety and Toxicity Studies

Use of genotoxicity data at CDER
- Results from carcinogenicity studies are generally not available until the time of product approval. Many people, including healthy volunteers, will have been exposed to pharmacologically active doses before carcinogenicity data are available.
- Data from genotoxicity studies are used as a surrogate for carcinogenicity during development, i.e., during clinical trials.

A review of the genotoxicity of marketed pharmaceuticals*
- 1999 PDR and peer-reviewed literature
- 467 marketed drugs
 - excluded anti-cancer, nucleosides, steroids, biologicals and peptide-based drugs
- 115 of 467 had no published genetox data
 - acutely administered: antibiotics, antifungals, antihistamines, anesthetics
- 352 had at least one standard genetox test result.

A review of the genotoxicity of marketed pharmaceuticals
Snyder and Green, 2001
- 201 had both genetox and rodent carcinogenicity
- 124/201 negative for carcinogenicity
- 77/201 positive or equivocal for carcinogenicity
- 100/124 noncarcinogens also negative for genotoxicity
 - 24 noncarcinogens with positive genetox data, 19 of these were in vitro cytogenetics positives
 - of 77 rodent carcinogens, 26 were genetox positives—many nongenotoxic rodent carcinogens!

Genetic Monitoring of Subjects in Clinical Trials
- A number of endpoints can be easily monitored in peripheral blood lymphocytes of patients
 - chromosomal aberrations
 - micronuclei
 - mutations at the HGPRT locus
- Such monitoring is rarely performed
 - what do you tell subjects if an effect is seen?
 - what are legal ramifications?

Is carcinogenesis testing required for approval of all drugs?
- Drug whose continuous use is for six months or more. Drugs used frequently in an intermittent fashion for chronic or recurrent conditions (allergic rhinitis, anxiety, depression).
- Cause for concern:
 - Product class
 - SAR
 - Evidence from repeat-dose studies, e.g., hyperplasia
 - Long-term retention of drug or metabolite in localized tissue
Safety and Toxicity Studies

Is carcinogenesis testing required for approval of all drugs?
- Drug that is unequivocally genotoxic can be presumed to be a trans-species carcinogen and may not need to be tested. CDER rarely sees examples of such drugs.
- For patient populations with short life-expectancies, carcinogenesis testing may not be required.
- Drugs used for prophylaxis, to prevent a disease should be tested.
- Carcinogenesis testing may not be necessary for endogenous substances given as replacement therapy (insulin).
- If replacement product is different from endogenous, or results in significantly increased exposure, carcinogenicity testing may be necessary.

The Perfect Carcinogenicity Test Would:
- Identify all materials that could potentially induce cancer in human beings.
- Have 100% sensitivity (no false negatives) and 100% specificity (no false positives).
- Rank carcinogens in order of potency.
- Identify target organs/tissues and types of tumors, e.g. small cell carcinoma of the lung vs. squamous cell carcinoma of the skin.
- Provide results rapidly and at low cost.

Safety of healthy subjects and patients in clinical trials
- Clearly genotoxic drugs are not given to healthy subjects or patients with non life-threatening diseases.
- Pharmaceutical companies screen drug candidates early in development to eliminate frankly genotoxic molecules. Such drugs are rarely the subject of an IND.
- Subjects in clinical trials may be exposed to nongenotoxic carcinogens although this effect, like other types of toxicities, is thought to have a threshold.

State of the art: 2-year carcinogenicity studies in rodents
- Protracted, 2-year in-life, 3 month preliminary dose-range finding studies, 4 - 6 month post-life, 3 years to get answer.
- Expensive, depending on route of exposure, can cost from one to several million dollars.
- Hazard assessment is imperfect. While most human carcinogens are identified by this assay, many false positives are suspected, especially those that induce tumors in only one species, one sex and/or one site.
- Quantitative risk assessments tend to exaggerate risks to humans.
- Many animals are required. Typically, 50/sex/dose plus vehicle controls.
- Positive data provide little or no mechanistic information about the material.

Challenges of Drug-Induced Tumorigenesis
- Drugs can induce tumors by a variety of mechanisms unrelated to DNA damage
 - Exaggerated pharmacological effects
 - Immune suppression
 - Hormonal imbalance
- Occasionally these drugs give an isolated positive genetox result, probably unrelated to actual MOA.

Positive results: Issues to consider regarding the product
- What is the drug indication?
- Who is the target population? Geriatric, pediatric, obstetric.
- What is the likely duration of use? Approved, off label?
- Are there other drugs already serving this medical need? What is their safety profile?
- What is the margin of exposure (carcinogenic vs. clinical dose)?
Future of Carcinogenicity Testing

- We will learn more about activation of oncogenes and inactivation of tumor suppressor genes.
- Techniques for detecting rare mutations in vivo are improving quickly.
- In the relatively near future, we will detect genetic lesions in wild-type experimental animals which ultimately result in tumor formation. These will be detectable after relatively short exposures perhaps even as short as 28 days.

How can the “omics” revolution help risk assessment for cancer

- Shorten time required to determine if drug or a chemical is potentially carcinogenic
- Lower cost of testing will allow more compounds to be tested
- Improve extrapolation of animal data to humans
- Improve extrapolation from experimental high dose to human exposure dose
- Reduce animal usage
- Provide insight into mechanisms of action

Thank you for your attention. Questions?
NOTES PAGE- Emergency Preparedness, Medical Countermeasures, and the Role of The Animal Rule

Brad Leissa, MD
Deputy Director/ CDER Emergency Coordinator,
Office of Counter-Terrorism & Emergency Coordination (OCTEC)
Emergency Preparedness, Medical Countermeasures and the Role of the ‘Animal Rule’

BRAD LEISSA, MD
DEPUTY DIRECTOR, OCTEC / CDER / FDA

A DAY WITH THE FDA:
CDER AND NIAID WORKING TOGETHER
July 27, 2007

Outline

- Threats
 - Medical countermeasures (MCM)
 - Product development
 - Approved MCMs
 - Approval pathways
 - ‘Animal Rule’
 - Emergency access to unapproved MCMs
 - Emergency Use Authorization (EUA)
 - Strategic National Stockpile (SNS)
 - MCM development: NIH-CDER
 - FDA websites
 - Contact information

Threats

- Biological
 - Category A: Anthrax, Plague, Botulism*, Smallpox, Viral hemorrhagic fevers
 - Pandemic Influenza, SARS
- Chemical
 - Nerve agents (sarin, soman, VX, etc.)
 - ‘Blood agents’ (cyanide)
 - ‘Blister agents’ or vesicants (mustard)
 - ‘Choking agents’ (chlorine, phosgene)
 - Toxic industrial chemicals (TICs)
- Toxins
 - Botulinum toxin, Ricin etc
- Radiological / Nuclear
 - Acute radiation syndrome (ARS)
 - Delayed effects of acute radiation exposure (DEARE)
 - Internal radionuclide contamination

MCM Development

- Unique operational considerations
 - Expedited administration during mass casualty
- Human experience may derive from past armed conflicts, accidents, and terrorist attacks
 - WWI, Goshana (Brazil), Tokyo sarin
- Classified national security information
- Shelf life / expiry (stockpiles)
- ‘Animal Rule’
- Unapproved products for mass casualties (EUA)

MCM Development unique challenges

- ‘Risky Market’
 - Market potential
 - USG
 - Stockpiles
 - Discovery → Licensure
 - “Valley of Death”
 - Push; Market share
 - Small biotech companies > “Big PhRMA”
 - Pull:
 - USG grants (NIH, DoD, DARPA)
 - USG contracts (BARDA, Project BioShield, CDC/SNS etc)
 - Exclusivity (Waxman-Hatch; Orphan)
 - Opportunity costs & return on investment

MCM Development unique challenges

- Special populations
 - 21 CFR Subpart D – “Additional Safeguards for Children in Clinical Investigations” – greater than minimal risk
 - 21 CFR 50.52: direct benefit to subject
 - 21 CFR 50.53: no direct benefit but generalizable knowledge
 - 21 CFR 50.54: opportunity to understand, prevent, or alleviate
- Early advice is expected
 - Significant development occurs prior to IND
 - Pre-pre IND
 - Pre IND
Emergency Preparedness...

Establish & Maintain Public Confidence in MCMs

Approved MCMs

- **Biological**
 - Ciprofloxacin, levofloxacin, doxycycline, procaine
 - Inhalational anthrax (post exposure)
 - Doxycycline, streptomycin
 - Plague, tularemia
 - Brucellosis (streptomycin; doxy with streptomycin)
 - Doxycycline
 - Q fever
 - Oseltamivir (Tamiflu®), zanamivir (Relenza®)
 - Seasonal influenza (prophylaxis & treatment)
 - Rimantadine (Flumadine®), Amantadine (Symmetrel®)
 - Influenza A (prophylaxis & treatment)

- **Chemical**
 - Atropine, pralidoxime, ATNAA / DuoDote, diazepam
 - Nerve agents (autoinjectors)
 - Pyridostigmine
 - Soman pre-treatment
 - Sodium thiosulfate*
 - Hydroxocobalamin (Cyanokit®)
 - Cyanide
 - Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA)
 - CWA barrier in conjunction with MOPP

- **Radiation / Nuclear**
 - Radioiodine
 - Potassium iodide (KI)
 - Iosat™, ThyroSafe®, ThyroShield™
 - Cesium
 - Prussian blue (Radiogardase®)
 - Plutonium, americium, curium
 - Ca-DTPA, Zn-DTPA

Approval Pathways

- **Traditional** - Clinical Safety and Efficacy
- **‘Accelerated Approval’** - Clinical Surrogates
 - Inhalational anthrax (post exposure)
- **‘Animal Rule’**
 - Pyridostigmine bromide (2003)
 - Hydroxocobalamin (2007)

‘Animal Rule’

- "Approval of New Drugs When Human Efficacy Studies Are Not Ethical or Feasible"
- **Scope**: drugs to prevent or ameliorate serious or life threatening conditions caused by exposure to biological, chemical, and nuclear/radiological substances.
- Final Rule published: 31 May 2002
 - Drugs (Subpart I): 21 CFR 314.600-314.650
 - Biologics (Subpart H): 21 CFR 601.90-601.95
- Regulatory authority of last resort.
‘Animal Rule’ Requirements

- There is a reasonably well-understood pathophysiological mechanism of the toxicity of the substance and its prevention or substantial reduction by the product;
- The effect is demonstrated in more than one animal species expected to react with a response predictive for humans, unless the effect is demonstrated in a single animal species that represents a sufficiently well-characterized animal model for predicting the response in humans;
- Must be able to explain interspecies differences where they exist
- No single animal model has been identified as the “best species” for every type of drug to treat ARS.
- Depends on drug mechanism of action.
- Does the animal’s physiology/anatomy/metabolism significantly mimic the human for a given drug?
- The animal study endpoint is clearly related to the desired benefit in humans, generally the enhancement of survival or prevention of major morbidity; and
- The data or information on the pharmacokinetics and pharmacodynamics of the product or other relevant data or information, in animals and humans, allows selection of an effective dose in humans.
- All studies subject to this rule must be conducted in accordance with pre-existing requirements under the good laboratory practices (GLP) regulations and the Animal Welfare Act...
- GLP allows reconstruction of the experiment from start to finish
- GLP is a quality management system.
- Traditional safety assessments
 - Animal toxicology
 - Human safety
- How much human safety is needed?
- A balance of risk, benefit, and uncertainty...
 - Pre-treatment vs. therapeutic
 - Safety concerns
 - Known concern with the drug class
 - Identified during product development
- Special Protocol Assessment (SPA) – includes pivotal animal efficacy study

Emergency Access to Unapproved MCMs

- Emergency IND
- Treatment IND
- ‘Contingency IND’ – not a regulatory term
- Emergency Use Authorization (EUA)

Informed Consent & Public Health Emergencies

- Informed consent may not be practicable during a rapidly progressive public health emergency
- Consent process may limit public health’s ability to respond and contain the disease/illness
Emergency Use Authorization (EUA)
- Signed into law 7/21/04 under BioShield Act
- Allows for the emergency use of:
 - Unapproved drugs, biologics, or devices
 - Unapproved use of approved products ("off label")
- Duration: ≤1 year
- Can be renewed
- No informed consent

EUA Criteria
- CBRN threat can cause serious, life-threatening disease or condition
- It is reasonable to believe that the product may be effective in Dx, Rx, prevention
 - Lower standard than ‘substantial evidence’
- Known and potential benefits of the product outweigh the known and potential risks
- No adequate, approved, and available alternative
 - Includes "special populations"

EUA Conditions
- Healthcare providers/authorized dispensers and affected individuals are informed about:
 - Risks & benefits
 - Alternative interventions
 - No consent but individuals also option to accept or refuse product
 - Exception -- Presidential waiver for DOD personnel
 - Monitoring and reporting of adverse events
 - Recordkeeping and reporting; data collection and analysis

EUA Misc.
- Requires Secretarial determination, declaration during an “emergency”.
- EUA cannot be “pre approved”
- Pre-EUA submissions reviewed
- Authority to issue EUA delegated to FDA Commissioner
- EUA issuance in consultation with Directors of CDC & NIH (where practicable)

FDA EUA Experience
- Jan 2005: EUA issued to DoD for use of anthrax vaccine (AVA) to prevent inhalation anthrax
- Jan 2006: DoD EUA terminated
- Numerous exercises

Strategic National Stockpile
Emergency Preparedness...

EMERGENCY PREPAREDNESS: More than Terrorism

MCM Development: NIH-CDEX
- Pandemic influenza
 - Development and Use of Antivirals for Pandemic Influenza Workshop (Nov. 8-9, 2006)
- Other Biothreats
 - NIAID Biodefense Research
- Chemical
 - Countermeasures Against Chemical Threats (CounterACT; NINDS et al)
- Radiation / Nuclear
 - Medical Countermeasures Against Radiological and Nuclear Threats (DAIT, NCI)
- HHS/ASPR/BARDA Interagency Working Groups
- PHEMC Enterprise

FDA Websites
- Counterterrorism (FDA)
 - www.fda.gov/oc/opacom/hottopics/bioterrorism.html
- Emergency Use Authorization of Medical Products (DRAFT FDA Guidance)
 - HTML: www.fda.gov/OHRMS/DOCKETS/98fr/bioterrorism.html
 - PDF: www.fda.gov/OHRMS/DOCKETS/98fr/bioterrorism.html
- Drug Preparedness and Response to Bioterrorism (CDER)
 - www.fda.gov/cder/drugprepare/

Brad Leissa, M.D.
Deputy Director & CDER Emergency Coordinator
Office of Counter-Terrorism and Emergency Coordination (OCTEC)
Center for Drug Evaluation and Research (CDER)
US Food and Drug Administration
E-mail: Brad.Leissa@fda.hhs.gov
Tel: 301-796-1693 (direct)
Tel: 301-796-2190 (main)
The IND Process: A Regulatory Perspective

David Roeder
Associate Director for Regulatory Affairs
Office of Antimicrobial Products
Center for Drugs, FDA
July 2007

The IND Regulations Include:
• 21 CFR 312 [Investigational New Drug Application]
• 21 CFR 50 [Protection of Human Subjects- Informed Consent]
• 21 CFR 56 [Institutional Review Boards]
• Other

The IND Process: A Regulatory Perspective

• When Is an IND Needed?
• Types of INDs
• Expanded Access
• The First 30 Days
• Clinical Holds
• The IND Life Cycle
• Special Programs
 – Pre-INDs
 – Subpart E
 – Fast Track
 – Special Protocol Assessments

When is an IND Needed?
Questions to ask
• Is it a drug?
• Is it being used in a clinical investigation?
• Is it a drug that is lawfully marketed in the U.S. for another use?

Is it a Drug?
• “articles intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease…” and
• “articles (other than food) intended to affect the structure or any function of the body…” (21 USC 321(g)(1)(B) and (C))
• The second prong of the definition does not apply to dietary supplements
• Note that a drug is defined by intended use, not the nature of the substance

Is it a Clinical Investigation?
• A “clinical investigation” is “any experiment in which a drug is administered or dispensed to, or used involving, one or more human subjects.”
• An “experiment” is “any use of a drug except for the use of a marketed drug in the course of medical practice.”
• Not limited to commercial development
Is it a Drug that is Lawfully Marketed in the U.S. for Another Use?

- 21 CFR 312.2 provides for exemptions for certain clinical studies of approved drugs for unapproved uses
- Most cases can be determined by the sponsor or investigator
- An exemption letter from the FDA is generally not necessary
- When in doubt, consult with the FDA

IND Exemptions for Lawfully Marketed Drug Products (must meet all criteria)

- Study is not intended to be reported as a well-controlled study for a new indication or significant labeling change
- Study is not intended to support significant change in advertising
- Does not involve a route of administration, dosing level, or patient population that significantly increases the risk (or decreases the acceptability of risk)

IND Exemptions for Lawfully Marketed Drug Products (cont.)

- Conducted in compliance with 21 CFR 56 (IRB) and 21 CFR 50 (informed consent)
- Conducted in compliance with 21 CFR 312.7 (promotion and charging)

Other IND Exemptions

- Certain studies with in vitro biologic diagnostic products
- Blood grouping serum
- Reagent red blood cells
- Anti-human globulin
- In vitro or laboratory research animals
- Certain bioavailability studies
- Radioactive drugs for certain research uses

Types of INDs

- “Regular” [21 CFR 312.23 (format and content)]
- Treatment [21 CFR 312.34]
- Emergency [21 CFR 312.36]
- Emergency Care Research [21 CFR 50.24]

Expanded Access

- Food and Drug Administration Modernization Act (FDAMA), section 402
 - Required the FDA to codify more comprehensive and consistent regulations for expanded access
 - Ensures that “opportunities to participate in expanded access programs are available to every individual with a life-threatening or seriously debilitating illness for which there is not an effective, approved therapy.”
- Proposed rule: December 14, 2006, Docket #2006N-0062
 - Proposal will replace regulations for treatment INDs and Emergency INDs
The IND Process

The First 30 Days
- Study cannot proceed until 30 days from FDA receipt (new INDs and reactivated INDs only)
- 30-day safety review
- Decision: safe to proceed or clinical hold?

Clinical Holds
[21 CFR 312.42]

- Unless accompanied by a clinical hold, agency comments to an IND sponsor are advisory only
- Can be imposed at any time
- Partial clinical hold vs. full clinical hold

Partial Hold vs. Full Hold
- Partial Clinical Hold allows limited study under an IND. The scope of the limitations can vary depending on the circumstances of the IND
- Full Clinical Hold prohibits all clinical study under an IND until issues are resolved

Grounds for Imposing a Clinical Hold: Phase 1
- Human subjects at unreasonable and significant risk
- Unqualified investigator(s)
- Investigator brochure misleading, erroneous or incomplete
- Insufficient information to assess risk
- Exclusion by gender if for life-threatening condition

Grounds for Imposing a Clinical Hold: Phase 2 or 3
- Any reason cited in previous slide
- Protocol deficient in design to meet stated objective
The IND Process

Lifting a Clinical Hold

- Sponsor must submit a complete response to the deficiencies listed in the clinical hold letter
- FDA will respond to this submission within 30 days with its decision

The Life Cycle of an IND

- Amendments
 - Protocol amendments [21 CFR 312.30(b)]
 - New protocols [21 CFR 312.30(a)]
 - New investigator [21 CFR 312.30(c)]
 - Information amendments (e.g., CMC, completed study reports) [21 CFR 312.31]
- Annual Reports [21 CFR 312.33]

The Life Cycle of an IND

- IND safety reports [21 CFR 312.32]
- Meetings [21 CFR 312.47]
 - End-of-Phase 2: planning for clinical studies that will provide definitive support for efficacy and safety*
 - Pre-BLA/INDA: discuss overall content and format of BLA/INDA*
 - Other
- Written and oral communication

* These meetings are generally relevant only to commercial INDs

Special Programs

- Pre-IND program
- Subpart E
- Fast Track
- Special protocol assessments

The pre-IND

- NOT a regulatory application
- Valuable tool for handling reviews and communications that can not be conducted under an IND

Common Uses of the pre-IND

- Guidance from the agency regarding difficult or novel drug development plans
- Pre-Emergency Use Authorization (pre-EUA)
- Drug development under the Animal Rule
The IND Process

Subpart E

• Procedures to expedite the development, evaluation, and marketing of new therapies intended to treat persons with life-threatening and severely debilitating illnesses, especially where no satisfactory alternative therapy exists
• 21 CFR 312 Subpart E

Fast Track

• Facilitate development and expedite review of drugs intended for the treatment of a serious or life-threatening condition and which demonstrate the potential to address unmet medical needs for such a condition.
• FDAMA sec. 112

Special Protocol Assessments

• Protocols for pivotal efficacy studies
 – Phase 3 clinical studies
 – Pivotal efficacy studies conducted under the “animal rule”
• Carcinogenicity protocols
• Drug Stability protocols
• FDAMA sec. 119(a)
NOTES PAGE- Clinical Trial Design and Statistical Issue
Bob O’Neill, PhD
Director, Office of Biostatistics, Office of Translational Sciences, CDER
Clinical Trial Design and Statistical Issues

Robert T. O’Neill Ph.D.
Director, Office of Biostatistics, Office of Translational Sciences, CDER

The AZT - Placebo Randomized Trial that provided the basis for approval of AZT - A Story

- FDA’s role in the evaluation of the protocol
- FDA’s role in the evaluation of the data
- Issues:
 - Interim analysis
 - Uncertainty in the endpoints and entrance criteria and generalization to the population benefiting
- Approved in March 1987 based upon single study
- Process for review and NIAID paradigm shift

Major Regulatory Events Impacting Determination of Evidence

- The 1962 Kefauver-Harris Amendments: the foundation for experimental evidence as the basis for drug approvals
- The 1970 definition of ‘Adequate and well controlled investigations’: the foundation for statistical principles: the concept of hypothesis testing and estimation, randomization, blinding, statistical analysis, quantifying uncertainty of conclusion
- The 1986 NDA Rewrite: the foundation for documentation of evidence, including statistical evidence and introduction of the integrated efficacy and safety section -

Major Events Impacting Determination of Evidence (cont.)

- The 1988 Guideline for the Format and Content of the Clinical and Statistical Sections of an application
- 1992; Subpart H - Accelerated Approval of New Drugs for Serious or Life-threatening Illnesses - surrogate endpoints (AIDS crisis)
- The 1997 Food and Drug Modernization Act (FDAMA): a modification of the substantial evidence criteria
- The 1998 ICH Statistical Principles for Clinical Trials: the foundation for global understanding, harmonization and implementation of statistical principles

Outline of talk

- Some background on the clinical trial as substantial evidence - the criteria for approving a new drug
- CDER’s role in the evaluation of a protocol and feedback to sponsors
 - An example and story: the AZT - Placebo controlled trial
 - CDER’s role in the assessment of evidence: evaluation of randomized clinical trials in NDA’s
- Principles of adequate and well controlled clinical trials
- Statistical Principles in Clinical Trials
- Some challenging areas in study design and analysis
- Guidance Development
- Concluding remarks

Some basics

A Successful Clinical Trial: Definition

- A trial whose observed treatment effect is clinically meaningful, estimated precisely and for which the statistical certainty (uncertainty) of the effect is large (small) enough to conclude that chance is not a plausible explanation for the observed effect
- The pre-specified criteria for success is met, when controlling for the multiple opportunities and or ways "to win"
- Usually, this means the p-value associated with the hypothesis(e)s is less than the pre-specified Type 1 error, i.e., \(\alpha < 0.05 \)
- Bias associated with the study design, conduct or analysis is not an alternative explanation for the observed effects
Trial Design Considerations (1)

- Endpoints
- Screening criteria, stratifications
- Dose(s)
- Duration of trial
- Comparison groups
- Sample size
- Multiplicity - how many ways to "win" for endpoints and subgroups
- Controlled and uncontrolled factors

Trial Design Considerations (2)

- Parallel, crossover, multi-center, factorial
- Superiority or Non-inferiority - objectives
- Group Sequential Designs for serious irreversible morbidity/mortality outcomes
- Adaptive study designs which may change design features depending upon accumulating data

Planning

- Specifying the objectives of the trial
- Quantifying the objectives in terms of study population, entrance criteria, clinical outcomes, variation of critical outcomes, and number of ways for success or a ‘win’
- Statistical Analysis Plan (SAP)
- Anticipating what will occur during conduct of the trial and planning how to deal with it - scenario planning/simulations

Major Protocol Assumptions to Enhance Chances of Successful Trial

- Quantification of endpoint incidence and variability
- Quantification of statistical risks:
 - chances of finding a treatment difference when it exists (power)
 - chances of falsely concluding a treatment effect exists when it doesn’t (Type 1 error, alpha)
- Incidence rate of endpoint in the control group
- Magnitude of treatment effect ES, and the dose at which it occurs
- Homogeneity of treatment effects in important subgroups

Statistical Measures of Uncertainty

- Type 1 error - false positive rate
- Type 2 error - false negative rate (at an effect size)
- Power at a specified value of the treatment effect to show a statistically significant difference
- P-value (derived from the observed test statistic): statistical measure of evidence against the null hypothesis
- Confidence level, e.g. 95%, 99%
- Confidence interval for treatment effect

Type 1 Error

- A pre-experiment statistical error rate defined as the probability of concluding that a treatment effect exists when, in fact, there is no treatment effect; usually set at 0.05 or less.
- "Statistically significant" means that the observed P-value is \(< \) Type 1 error.
Type 2 Error; Power

- The probability of not concluding a treatment effect exists when, in fact, a treatment effect of size ES, really is true.
- Power is the probability of a statistically significant (P-value less than 0.05) result when a treatment effect of size ES exists. Power is one minus the type 2 error.

P-value

The probability of a treatment effect of the size observed or more extreme, if, in reality, NO treatment effect exists; the p-value is a random variable, calculated on the basis of the observed test statistic, e.g. t statistic; the p-value will vary as a function of the sample size and the evidence from the data in favor of the alternative hypothesis.

Planning the Sample Size of A Study: Statistical components

- Understanding the sample size formula and its assumptions
- For hypothesis testing
- For estimation of treatment effects
- The relationship between hypothesis testing and estimation
- Planning usually assumes a correctly specified dose and treatment effect

Contradicted and Initially Stronger Effects in Highly Cited Clinical Research

JAMA. 2005;294:218-228

Results

Of 49 highly cited original clinical research studies, 45 claimed that the intervention was effective. Of these, 7 (16%) were contradicted by subsequent studies, 7 others (16%) had found effects that were stronger than those of subsequent studies, 20 (44%) were replicated, and 11 (24%) remained largely unchanged. Five of 6 highly cited nonrandomized studies had been contradicted or had found stronger effects vs 9 of 39 randomized controlled trials (p=0.05). Among randomized trials, studies with contradicted stronger effects were smaller (p=0.005) than replicated or unchanged studies, although there was no statistically significant difference in their early or overall citation impact. Unchallenged control studies did not have a significantly different share of refuted results than highly cited studies, but they included more studies with “negative” results.
Theoretical Outcomes From a Series of 1000 Clinical Trials Assuming 1 of 10 Drugs Are Effective (the prior)

100 trials with true efficacy: H_0 is false

$\beta = 0.20$

20 trials accept H_0

900 trials with no efficacy: H_0 is true

$\alpha = 0.05$

45 trials reject H_0

855 trials accept H_0

False positive trial rate $= \frac{45}{80+45} = 36\%$

Simon, R., Cancer Treatment Reports, V 66, 1982, 1080-1087

The Chances of Repeating a Statistically Significant Result in a Confirmatory Study: As A Function of the Initial Observed P-Value

Replicating a Study Result

Probability of observing a statistically significant result (e.g., $p < 0.05$) upon repetition of a clinical trial when the effect ES observed in the first trial is assumed to be the true effect

<table>
<thead>
<tr>
<th>Observed P-Value</th>
<th>Probability of a significant result (Power)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.37</td>
</tr>
<tr>
<td>0.05</td>
<td>0.50</td>
</tr>
<tr>
<td>0.03</td>
<td>0.58</td>
</tr>
<tr>
<td>0.01</td>
<td>0.73</td>
</tr>
<tr>
<td>0.005</td>
<td>0.80</td>
</tr>
<tr>
<td>0.001</td>
<td>0.91</td>
</tr>
</tbody>
</table>

The Review and Evaluation of evidence from RCT’s

An Example

Carvedilol and the Food and Drug Administration Approval Process: An Introduction

Lloyd D. Fisher, PhD, and Lemuel A. Moyé, MD, PhD

Department of Biostatistics, University of Washington, Seattle, Washington and University of Texas School of Public Health, Houston, Texas

ABSTRACT: We discuss briefly the new drug carvedilol (Coreg®), a beta blocker, alpha blocker, and antioxidant. This drug was developed for congestive heart failure in a series of trials, first in the United States and later in Australia and New Zealand. It's survival improved in this treatment. We use a model for the evaluation and approval of drugs to illustrate the process of clinical trials and the role of the FDA in this process. This document serves as background in the discussion of carvedilol's approval. Controlled Clinical Trials 1999, 20:11-15 © Elsevier Science Inc 1999

Carvedilol and the Food and Drug Administration (FDA) Approval Process: The FDA Paradigm and Reflections on Hypothesis Testing

Lloyd D. Fisher, PhD

Department of Biostatistics, University of Washington, Seattle, Washington

ABSTRACT: Carvedilol (Coreg®) is a beta and alpha blocker and an antioxidant drug, was evaluated for mortality in several heart failure patients in a program including two United States and one Australian/New Zealand study. The data were analyzed for Coreg-181 by the Cardiovascular and Renal Drugs Advisory Committee of the US Food and Drug Administration (FDA) and for Coreg-182 by the Europe. The data set included patients who were randomized to the active treatment group or the placebo group. The trial results showed significant differences between the active treatment group and the placebo group in terms of mortality, hospitalizations, and hospital stays. The FDA issued a warning label for carvedilol, which was reevaluated several times. The US program was followed closely, while the European program was initially more relaxed. This document discusses the role of the FDA in the approval process and provides insights into the regulatory environment for new drug development. Controlled Clinical Trials 1999, 20:11-15 © Elsevier Science Inc 1999
The Development of Guidance to Industry

A Major product of the IND/NDA review process

Its impact on the efficiency and predictability of medical product development and on expectations for evidence

1988 Documentation and Reporting of Clinical Studies

♦ The 1988 Guideline for the Format and Content of the Clinical and Statistical Sections of a New Drug Application

1990

ICH and the Start of International Harmonization of Biostatistics Principles for Clinical Trials

International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use

♦ Began in 1990: six parties - Japan, Europe, U.S., industry and regulators

♦ Canada, Asia, other regions

♦ ICH E9 Guidance would not have occurred without statistical representatives of three regions

♦ They were not in place in 1990

♦ ICH E9 was one of the last efficacy topics considered
Eight ICH Documents have implications for clinical trials

- E - 3 : Clinical Study Reports
- E - 4 : Dose - Response
- E - 5 : Acceptance of foreign data
- E - 6 : Good Clinical Practice
- E - 7 : Special populations: Geriatrics
- E - 8 : General Consideration for clinical trials
- E - 9 : Statistical Principles
- E - 10 : Choice of control groups
Clinical Trial Design

Inference for Non-Inferiority
What conclusion can be drawn?

Statistics in Medicine
Special Issue:
Non-Inferiority Trials:
Advances in Concepts and Methodology
Volume 22, Issue 2, 2003

Some challenging areas:
Statistical concepts are critical
- Non-inferiority clinical study designs and selection of the effect size margins
- New study designs - adaptive study designs
- Subgroup analysis
- Multiplicity issues
- Quantitative safety analysis in clinical trials

Clarifying the terminology
What are adaptive designs?
- Distinguish between adaptive strategies and formal prospectively designed 'adaptive designs'
- OUR DEFINITION: An adaptive design is a prospectively designed study to allow for future planned design modifications depending upon the data accrued in the trial up to some interim time; the desire is to modify the study objective or design based on interim knowledge of and access to interim unblinded results from that trial, but to do so in a manner that appropriately controls the type 1 error (or false positive rate) for the multiple options and possibilities that the adaptations allow for. Data from each stage is intended to be combined in some manner
- The trial needs to be interpretable at its conclusion and the operational bias needs to be minimized
The term adaptive may mean:

- Adaptive change in planned sample sizes
- Adaptive change in choice of test statistic
- Adaptive choice of hypothesis (inferiority to superiority)
- Adaptive choice of a primary endpoint
- Adaptive choice of one or more dose groups
- Adaptive allocation to treatment to achieve balance
- Adaptive allocation to treatment to assign fewer subjects to the inferior treatment
- Adaptivity to adjust statistical power on what has been observed
- Adaptivity to drop or add treatment arms
- Adaptivity to enrich subpopulations

Quantifying risks and harms - improving methodology

Subgroup analysis

Discovery vs. Confirmation
Promotion (Advertising) of a label claim

- Personalized medicine
- Planning for subgroups
- Searching for subgroups
- Relationship to ‘enrichment ‘designs
Clinical Trial Design

These are not independent subgroups, nor is randomization by subgroup - slicing the same data by univariate dimensions.

Concluding Remarks

- Statistical principles are essential to the design, analysis and interpretation of the modern randomized clinical trials - the adequate and well controlled trial.
- Evidence based evaluation of RCT’s is FDA’s standard for proof of efficacy and safety.
- FDA’s review process has evolved to provide advice and guidance during development and study planning as well as scientific review and evaluation.
- NIAID has been a major partner with FDA with the AIDS Clinical Trial Group (ACTG) structure.

The Challenge of Subgroup Analyses — Reporting without Distorting
Stephen W. Legman, Ph.D.

In the 20 subgroup analyses conducted by Whitt et al., only one interaction test, for symptomatic versus asymptomatic patients (see the article for the precise definition), gave an uncorrected P-value smaller than 0.05 (0.045). Had the interaction tests been assessed with a criterion of 0.05 × 0.05 = 0.0025 to account for the fact that 20 were conducted, none would have come close to reaching statistical significance.
NOTES PAGE- Clinical Drug Review Process/Issues
Badrul Chowdhury, MD, PhD
Director, Division of Pulmonary and Allergy Products, CDER
Clinical Drug Review Process

Badrul A. Chowdhury, MD, PhD
Director
Division of Pulmonary and Allergy Products
Center for Drug Evaluation and Research
US Food and Drug Administration

Disclaimer

• In this presentation I am relaying personal views and opinion. This presentation is not intended to convey official US FDA policy, and no official support or endorsement by the US FDA is provided or should be inferred.
• I do not have any financial interest or conflict of interest with any pharmaceutical company
• The materials presented are available in the public domain

Outline of the Presentation

• Drug development and regulatory control
• New drug application (NDA) and review
• Investigational new drug (IND) application and review

Challenges in Drug Development

- Expensive and Risky

Estimated Cost >$800 million

Phases

Market Launch
Post Marketing
Development
Clinical Studies
Preclinical Studies
Basic Research
Screening, Synthesis
Years
Quantity of Substances

Adapted from: PhRMA insights 2003, and Tufts Center for the Study of Drug Development database

Drug Discovery and Development

Adapted from: FDA Council Congressional Briefing Series “Molecules to Miracles,” 1997

Drug Development

Adapted from: FDA Council Congressional Briefing Series “Molecules to Miracles,” 1997

57
Evolution of Drug Regulation
Milestones of Drug Safety Regulation
- **The Pure Food and Drugs Act of 1906**
 - Drug could only be removed from market if government could prove the drug was adulterated or misbranded
- **Federal Food, Drug, and Cosmetic Act of 1938**
 - Manufacturers had to provide evidence of SAFETY of new drugs before marketing
- **The Drug Amendment of 1962**
 - Manufacturers had to provide evidence of EFFECTIVENESS in addition to SAFETY before marketing
 - IND process clarified, and distribution of investigational drugs regulated

FDA’s Authority
- **Federal Food, Drug, and Cosmetic Act (FDC Act)**
 - Broadly defines and describes various processes, e.g.,
 - Sec. Sec. 201 - defines “drug” and “device”
 - Sec. 503 - prescription vs OTC dispensing
 - Sec 505(i) - human testing process (IND)
 - Sec. 505(h), Sec. 505(j) - marketing process (NDA, ANDA)
- **Code of Federal Regulations (CFR)**
 - Written by the FDA to instruct how the FDC Act is to be applied. e.g.,
 - 21 CFR Part 201 - drug labeling
 - 21 CFR Part 312 - IND processes
 - 21 CFR Part 314 - NDA and ANDA processes
- **Guidance**
 - Written by the FDA to reflect current thinking on specific issues
 - Not binding to the FDA or to the regulated industry

NDA Process
- **Sec. 505 of FD&C Act**
 - “No person shall introduce or deliver for introduction into interstate commerce any new drug, unless approval of an application filed pursuant to section (b) or (j) is effective with respect to such drug”
- **Sec. 505 (d) of FD&C Act**
 - Adequate manufacturing and controls to ensure identity, strength, quality, and purity (QUALITY)
 - Safety under conditions of labeled use (SAFETY)
 - Substantial evidence of efficacy under conditions of labeled use (EFFICACY)

Technical Sections of NDA
- **21 CFR 314.50 (d)**
 - Chemistry, manufacturing, and controls
 - Nonclinical pharmacology and toxicology
 - Human pharmacokinetics and bioavailability
 - Microbiology
 - Clinical data
 - Statistics
 - Pediatrics
 - Samples and labeling

NDA Clinical Review
- **Efficacy**
 - Generally supported by two adequate and well-controlled studies, each convincing on its own
 - Occasionally one well-controlled study may be adequate
- **Safety**
 - Exposure guidelines (ICH E1A: The extend of population exposure to assess clinical safety) require at least 1500 subjects exposed, including 300 to 600 exposed for 6 months or longer, and 100 exposed for 1 year or longer

NDA Review and Action
- **FDA review**
 - by various review disciplines
- **File within 60 days**
 - 21 CFR 314.101 describes conditions under which an application can be refused to be filed
- **Advisory committee meeting, if necessary**
- **Action within 10 months for standard application and within 6 months for priority application**
 - Approval (21 CFR 314.105)
 - Approvable (21 CFR 314.110)
 - Not Approvable (21 CFR 314.120)
Clinical Drug Review Process

Exemption of IND Requirement

- The clinical investigation of a drug product that is lawfully marketed in the United States is exempt from the IND requirements if all of the following apply (21 CFR 312.2(b))
 - the investigation is not intended to be reported to the FDA to support a new indication or significant change in labeling
 - the investigation is not intended to support a significant change in the advertising for the drug product
 - the route of administration, dosage level, patient population, and other factors do not significantly increase the risk or decrease the acceptability of the risks
 - the investigation is conducted in compliance with the requirements of an IRB (21 CFR 56) and with informed consent (21 CFR 50)
 - the investigational drug may not be represented as safe or effective for the purpose for which it is under investigation, nor it may be commercially distributed, or test marketed, or be sold

IND Sponsors

- **Commercial entity or investigator**
 - Health care provider
 - Treatment use of investigational drugs (21 CFR 312.34)
 - Use of investigational drugs for serious and immediately life threatening diseases in patients for whom no satisfactory alternative drug is available
 - Emergency use of investigational drug (21 CFFR 312.36)
 - Use of investigational drugs in emergency situation that does not allow time for full IND submission

IND Process

- **Sec. 505(i) of FD&C Act**
 - "... drugs intended solely for investigational use by experts qualified by scientific training and experience to investigate the safety and effectiveness of drugs."
 - Use conditioned on
 - Pre-clinical tests adequate to justify human testing
 - Investigators agree to supervise use of drug and give to no one else
 - Investigators agree to maintain records, and make reports
 - Regulations require informed consent

CMC Information

- **Assure proper identification, quality, purity, and strength of the investigational drug for safe use in the proposed studies**
- **Amount of information needed will vary with the scope of the investigation**

IND Process

- **Technical contents of IND application (21 CFR 312.23)**
 - Chemistry, manufacturing, and controls information
 - Pharmacology and toxicology information
 - Previous human experience
 - Investigators brochure
 - General investigational plan
 - Protocols for each planned study

CMC Information

- **Drug substance**
 - Description (physical, chemical, or biological characteristics)
 - Name and address of manufacturer
 - General method of preparation
 - Acceptable limits and analytical methods
- **Drug product**
 - List of all components
 - Name and address of manufacturer
 - Manufacturing and packaging process
 - Acceptable limits and analytical methods
 - Stability during planned clinical studies
Clinical Drug Review Process

Preclinical Information
- Adequate in vitro or animal toxicology studies on the basis of which the investigator has concluded that it is reasonably safe to conduct proposed clinical studies
- Amount of information needed will vary with the duration and nature of the proposed clinical investigation

Preclinical Study Attributes
- Aim is to select a reasonably safe dose for human use
 - Identify toxicities to be monitored in human subjects
 - Identify a no observed adverse effect level (NOAEL) that will guide human dose selection – starting human dose should provide an appropriate safety margin, e.g., 10 fold below NOAEL in most sensitive species
 - Assess reversibility of toxicities
- Study two species, at least one non-rodent species
- Assumptions in lung deposition (with appropriate particle size, e.g., MMAD 5 micron or less for man and dog, and 2 micron or less for rodents)
 - Dog: 15-20% deposited
 - Rat: 7-10% deposited
 - Human: 100% deposited

Investigator’s Brochure Content
- Summary CMC information
- Summary pharmacology and toxicology information
- Summary of pharmacokinetics in animals, and human if known
- Summary of safety and effectiveness in humans from previous studies, if available
- Description of possible risks and side effects, and precautions and special monitoring plan

Clinical Study Protocols
- Protocol for each planned study
 - Phase 1 protocol should detail elements that are critical to safety
 - Phase 2 and 3 protocols should be detailed and describe all aspects of the study
- Protocols elements
 - Statement of the objectives and purpose of the study
 - Patient selection criteria
 - Description of study design
 - Method for determination of study drug dose(s) and duration of exposure
 - Description of observations and measurement to me made to fulfill the study objective
 - Description of clinical procedures, laboratory tests, etc., to monitor effects of drugs and to minimize risk

IND Administrative Actions
- IND goes into effect
 - 30 days after FDA receives the IND, unless the IND is placed on a clinical hold
 - Earlier on notification by the FDA

Clinical Holds of IND
- Grounds of imposing clinical holds of phase 1 studies (21 CFR 312.42)
 - Subjects would be exposed to unreasonable and significant risk of illness or injury
 - Clinical investigators are not qualified
 - Investigator brochure is misleading, erroneous, or materially incomplete
 - The IND does not contain sufficient information necessary to assess the risks to subjects in the proposed studies
 - The study excludes subjects of one gender for a drug intended to treat a life-threatening disease
Clinical Holds of IND

- Grounds of imposing clinical holds of phase 2 and 3 studies (21 CFR 312.42)
 - For any of the condition for phase 1 study
 - The plan or protocol for the investigation is clearly deficient in design to meet its stated objectives
NOTES PAGE- DSI’s Role in Bioequivalence Monitoring/FDA Expectations of Clinical Investigators
Tejashri Purohit-Sheth, MD
Medical Officer, Division of Scientific Investigations, Office of Compliance, CDER
DSI's Role in Bioresearch Monitoring

DSI's Role in Bioresearch Monitoring/FDA Expectations of Clinical Investigators

Tejasri Purohit-Sheth, M.D.
Medical Officer
Division of Scientific Investigations (DSI)
Telephone: 240-276-8828
FAX: 240-276-8844

Division of Scientific Investigations
Director
Gary Della’Zanna, D. O., MSc
Deputy Director
Joseph Salewski
Good Clinical Practice Branch I
Connie Lewin, MD, MPH
Good Clinical Practice Branch II
Leslie Ball, MD
GLP/BEQ Branch
C. Viswanathan, PhD

Presentation Outline
- Overview of BIMO
- DSI's Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Inspectional Procedures/DSI Actions
- Case Studies

FDA’s BIMO Program
- FDA’s Bioresearch Monitoring Program - A comprehensive program of on-site inspections and data audits designed to monitor all aspects of the conduct and reporting of FDA regulated research.

Program Objectives
- To verify the quality and integrity of research data
- To ensure that the rights and welfare of human research subjects are protected
CDER’s BIMO Program Responsibilities

- Ensure adherence to applicable regulations with respect to:
 - Good Laboratory Practice (GLP)
 - In vivo Bioequivalence
 - Good Clinical Practice (GCP)
 - Institutional Review Boards
 - Clinical Investigators
 - Sponsor-Monitors, CROs

About BIMO Inspections

- BIMO inspections can be conducted at any point in the drug development process
- Inspections during IND phase are generally “for cause = directed”
- Inspections during the NDA phase are generally “routine”, but can be “for cause” or “directed”
- May include Clinical Investigator (CI), Sponsor/Monitoring (S/M), Contract Research Organizations (CRO), Institutional Review Boards (IRB), Good Laboratory Practice (GLP), and Bioequivalence (BEq) inspection of FDA regulated research.

Presentation Outline

- Overview of BIMO
- DSI’s Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Inspectional Procedures/DSI Actions
- Case Studies

DSI’s Role in BIMO Implementation

- Directs inspections to ensure the protection of the rights and welfare of human research subjects
- Audits and verifies clinical trial data submitted to the FDA
- Ensures that investigators, sponsors, and contract research organizations (CROs) who conduct non-clinical and clinical studies on investigational new drugs comply with United States law and regulations covering GCP and GLP

CDER BIMO Inspections (FY 1997-2006)

- Based on Inspection Start Date

CDER BIMO Inspections (FY 2006)

- Based on Inspection Start Date

- CI = 379
- BEQ = 105
- IRB = 49
- GLP = 20
- S-M = 27
- Total = 580
DSI's Role in Bioresearch Monitoring

Regulatory Authority to Conduct Inspections/Audits

- 21 CFR 312.68
 - “An investigator shall upon request from any properly authorized officer or employee of FDA, at reasonable times, permit such officer or employee to have access to, and copy and verify any records or reports made by the investigator…”

How does DSI implement BIMO?

- Consulting service to Review Divisions
- Assigns and Performs inspections through the Office of Regulatory Affairs (ORA) to verify data submitted in support of New Drug Applications (NDAs)
- Investigates allegations of regulatory non-compliance
- Provides a scientific and medical review of Establishment Inspection Reports (EIRs) generated by ORA
- Makes recommendations regarding data to Review Divisions and directs regulatory actions

Presentation Outline

- Overview of BIMO
- DSI’s Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Overview of FDA Inspections and Results
- Case Studies

General Goals of Inspection: Clinical Investigator Program

- Adherence to applicable regulations with respect to Good Clinical Practice
- Validity of studies in support of marketing applications
- Ensuring that rights, safety and welfare of study subjects have been protected

Goals of Inspections

- Adequacy of the following:
 - Clinical investigator Qualifications
 - Training/Experience/CV review
 - Clinical investigator oversight of study
 - In-depth knowledge of protocol/study plan
 - Selection of competent staff for delegation of responsibilities
 - Clinical Study Center/Site
 - Informed Consent Procedures
 - IRB approval
 - Adherence to study protocol
 - Test article accountability
 - Recordkeeping

Clinical Investigator Inspections: What do we look for during the inspection?

The FDA Inspection (Audit) compares
- Source Document Medical Record Data
- Case Report Forms
- Data Listing Submitted to NDA
Verify:
- Source of subjects; Did subjects exist?
- Did they have the disease under study?
- Did they meet inclusion/exclusion criteria?
- IRB Review Obtained? Consent obtained?
- Adherence to protocol?
- Verify primary efficacy measure
- Adverse events?
- Safety data: Labs, EKG etc.
- Drug Accountability? Blinding of data?
Presentation Outline

- Overview of BIMO
- DSI's Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Overview of FDA Inspections and Results
- Case Studies

Rationale for Inspections

- For-Cause
 - Based on complaints from any source
 - Allegations that raise concerns regarding data integrity or the rights, welfare, and safety of study subjects have been compromised

- PDUFA-Related
 - Drug is an NME
 - Pivotal studies not conducted under IND
 - Data in support of application is generated only from foreign data

Complaints Received: 1992-2006 by FY

“For Cause” Inspections Clinical Investigator (CDER, FY 1992 - 2006)

PDUFA-Related: Selection of CIs

- Site selection is a joint process between Review Divisions and DSI
- Site selection based on:
 - A specific safety concern at a particular site or sites
 - Based on review of AEs, SAEs, deaths, or discontinuations
 - A specific efficacy concern based on review of site specific efficacy data
 - Efficacy differential between sites
 - Final outcome driven by a particular site or sites
 - Efficacy outcome different than expected based on mechanism of action of drug
 - Specific concern for scientific misconduct at one or more particular sites based on review of financial disclosures, protocol violations, study discontinuations, safety and efficacy results
 - Previous inspectional history of specific Clinical Investigators

Presentation Outline

- Overview of BIMO
- DSI's Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Overview of FDA Inspections and Results
- Case Studies
DSI's Role in Bioresearch Monitoring

FDA Expectations of Clinical Investigators

- Adherence to Code of Federal Regulations
- Knowledge of Clinical Investigator regulations
- Understanding Clinical Investigator responsibilities

GCP Regulations

FDA has regulations governing the approval, conduct, review and reporting of clinical research intended for submission:

- 21 CFR 50: Informed consent (rev. 2001)

These are legally enforceable requirements.

Definitions

- Investigator: an individual who actually conducts an investigation (under whose immediate direction the drug is administered or dispensed to a subject)
- Clinical Investigation: any experiment in which a drug is administered or dispensed to, or used, involving one or more human subjects

General Clinical Investigator Responsibilities

- Ensuring that an investigation is conducted according to the
 - Signed investigator statement (Form 1572)
 - Investigational plan
 - Applicable regulations
- Control of drugs under investigation
- Ensuring that informed consent is adequately obtained according to 21 CFR 50

Investigator Responsibilities*

- Follow the current protocol [21 CFR 312.60]
- Personally conduct or supervise investigation(s) [21 CFR 312.60]
- Ensure that all persons assisting in conduct of studies are informed of their obligations [21 CFR 312.60]
- Ensure IRB review/approval and reporting requirements are met [21 CFR 56 & 312.66]
- Obtain informed consent of each human subject to whom the drug is administered [21 CFR 50]

* (Form FDA 1572: #9. Commitments)

Investigator Responsibilities*

- Notify the sponsor before making changes in the protocol [21 CFR 312.60]
- Notify the IRB and obtain IRB approval before making changes in the protocol [21 CFR 312.60 & 312.66]
- Report adverse events to the sponsor and IRB [21 CFR 312.64 & 312.66]
- Maintain adequate and accurate records
 - Disposition of drugs [21 CFR 312.64 (a)]
 - Case histories [21 CFR 312.64 (b)]
- Maintain Records for a period of 2 years following the date a marketing application is approved [21 CFR 312.68]
- Make records available for inspection [21 CFR 312.68]
- Comply with all other requirements in 21 CFR 312

* (Form FDA 1572: #9. Commitments)
DSI's Role in Bioresearch Monitoring

Violative Actions
- revise the protocol without obtaining the sponsor's written concurrence
- neglect to submit the revised protocol to IRB for approval
- forget to obtain written informed consent and provide oral explanation of the study
- forget to update consent forms to reflect changes in the protocol

Violative Actions
- over-delegate to non-physicians (e.g., diagnosis that qualifies/determines eligibility for entry into the study)
- erase, white-out or obliterate original data entry either in CRFs or medical charts
- accept suggested changes to study data without checking the source documents or without justification for such changes

Violative Actions
- backdate the consent forms and signatures
- forget to obtain IRB approval of consent form revisions
- permit changes to study data without the investigator's concurrence, especially after the investigator has "signed-off" the completed CRF
- blame anyone for inaccuracies in the CRFs

Violative Actions
- create fake records or patients by using demographic data or using blood, urine and tissue samples from other subjects
- alter patients' diaries to reflect a positive outcome
- use your staff as subjects in a study not having the condition(s) under investigation
- destroy study records

Presentation Outline
- Overview of BIMO
- DSI's Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Inspectional Procedures/DSI Actions
- Case Studies

Inspection Procedures
- DSI submits assignment to ORA
- ORA conducts an inspection
 - FDA Form 483 may or may not be given
 - ORA submits Establishment Inspection Report (EIR) to DSI
 - Inspection receives compliance classifications
 - DSI reviews EIR
 - DSI takes regulatory action if warranted
Compliance Classifications

NAI - No Action Indicated
 Inspected firm is in compliance

VAI - Voluntary Action Indicated
 Deviation(s) from the regulations
 Voluntary correction is requested

OAI - Official Action Indicated
 Because of serious non-compliance
 requiring regulatory or administrative
 action by FDA

Clinical Investigator Inspections
Final Classification*
FY 2006

Total inspections with final classification = 364
Includes OAI Untitled Letters
Based on Letter Date

Consequences of non-compliance
(not all inclusive)

- Warning Letters
- NIDPOE Letters
- Disqualification

Clinical Investigator Deficiencies*
CDER Inspections (all) - FY 2006**

CDER Clinical Investigator
OAI Actions
(WARNING/NIDPOE/OAI Untitled Letters*)
FY 2000-2006

Based on Letter Issued Date

Clinical Investigator Deficiencies
CDER Inspections - FY 2006

Based on Letter Issued Date

Foreign = 89
Domestic = 290

DSI's Role in Bioresearch Monitoring
Presentation Outline

- Overview of BIMO
- DSI’s Role in BIMO Implementation
- Goals of Inspections: Clinical Investigator Program
- Selecting Clinical Investigators for Audit
- FDA Expectations of Clinical Investigators
- Inspectional Procedures/DSI Actions
- Case Study

Case Study: Inspection History

- PDUFA inspection request: Site identified by review division for highest enrollment (407 subjects) for study
- FDA inspectional findings: many subjects enrolled were part of a program unrelated to indication sought in application and were enrolled with questionable history
- Referral to FDA Office of Criminal Investigations (OCI) for investigation
- Of 220 subjects interviewed, 201 did not participate; 15 subjects participated; 4 subjects participation unknown
- Subject #26 was fictitious
- Many subjects had no knowledge of being enrolled in drug study

Results of Inspectional Findings

- DSI recommended data be excluded from NDA
- NIDPOE Letter issued

Helpful Websites

- DSI Homepage: www.fda.gov/cder/offices/dsi
 Includes links to the Clinical Investigator Inspection List (NEW), Bioresearch Monitoring Information Systems (BMIS) files (NEW), Warning Letters, NIDPOE Letters, Lists of Disqualified or Restricted or Debarred Investigators, Code of Federal Regulations, etc.
- FDA Homepage: www.fda.gov
 Includes links to the Federal Register Notices, FDA guidance documents.
- Compliance Programs: www.fda.gov/ora/compliance_ref/default.htm

Clinical Investigator Inspections

Center for Drug Evaluation & Research FY 97-06
Based on Inspection Start Date
Pharmaceutical Quality Assessment
Moheb Nasr, PhD
Director, Office of New Drug Quality, CDER
Pharmaceutical Quality Assessment

Moheb M. Nasr, Ph.D.
Office of New Drug Quality Assessment
ONDQA, CDER, FDA
Moheb.Nasr@FDA.HHS.GOV
NIAID/CDER Workshop
July 27, 2007

Outline

- Pharmaceutical Quality Assessment
- Types of Drug Applications Regulated by CDER
 - Office of New Drug Quality Assessment (ONDQA)
 - OGD and OBP
 - Investigational New Drug Applications (INDs)
 - CMC Expectations for INDs
 - CMC Expectations for NDAs
 - FDA Quality Initiatives
 - FDA View on QbD
- Conclusion

Types of Drug Applications Regulated by CDER

- Investigational New Drug Application (IND)
 - Section 505(i) of FD&C Act
- New Drug Applications (NDA)
 - Section 505(b) of FD&C Act
- Abbreviated New Drug Application (ANDA)
 - Section 505(j) of FD&C Act
- Biologic Licensing Application (BLA)
 - Section 351 of the Public Health Service Act and in specific sections of the FD & C Act

Office of New Drug Quality Assessment (ONDQA)

- Review responsibilities include:
 - Review of the Chemistry, Manufacturing, & Controls (CMC) portion for:
 - Investigational New Drug Applications (IND)
 - New Drug Applications (NDA)
 - Post-approval CMC changes
 - Annual Reports
 - Compendial standards evaluation
 - Guidance and Policy development

ONDQA Review Responsibilities (cont.)

- Drug Substance:
 - Characterization (structure, physico-chemical properties, etc.)
 - Manufacturing Issues
 - Quality Control
 - Container-Closure System
 - Stability (shelf-life)

Drug Substance (cont.)

- Simple to very complex structures
- Complexity may arise from
 - Various sources and methods of preparation
 - Synthesis
 - Chemical, enzymatic
 - single step, multi-step, stereo-specific, etc.
 - Fermentation - Microbial (antibiotics)
 - Biotechnology - Recombinant, etc.
 - Naturally derived
 - Animal, botanical, mineral
 - Isolation, extraction, purification, etc.
 - Physico-chemical and thermal stability
Pharmaceutical Quality Assessment

ONDQA

Review Responsibilities (cont.)

- Drug Product:
 - Pharmaceutical development
 - Formulation
 - Excipients (physico-chemical properties, performance properties, etc.)
 - Manufacturing issues
 - Quality control
 - Container-Closure System
 - Drug Delivery Systems
 - Stability (shelf-life)

Drug Product (cont.)

- Simple to most complex
- Complexity may depend upon
 - Physico-chemical, thermal stability of the formulation components
 - Route of administration
 - Onset of action
 - Site of action
 - Dosage form
 - Drug delivery system

Office of Biotechnology Products (OBP)

- Transferred from CBER, 2002
- Regulatory responsibilities include:
 - Review NDA & BLA applications for therapeutic protein and monoclonal antibody products
 - Conduct Research. Topics include:
 - HIV/AIDS
 - Cell Biology
 - Tumor Biology (solid tumors)
 - Humoral Immunity (Antibodies, B-cell tumors)
 - Cellular Immunity
 - Microbiology (Innate immunity, Counter bioterrorism)

Office of Generic Drugs (OGD)

- Regulatory responsibilities include:
 - The review and approval of Abbreviated New Drug Applications (ANDA) – also referred to as generic drugs.
 - Labeling of Generic drugs
 - Citizen Petitions for generic drugs

Website: http://www.fda.gov/cder/ogd/#Introduction

Investigational New Drug Applications (IND)

- Subsection 505(i) allows for an exception in the law prohibiting interstate commerce of unapproved drugs in humans
- Application for these exceptions are called 'Investigational New Drug Applications (IND)
- INDs are regulated under 21 CFR part 312
 - http://www.access.gpo.gov/nara/cfr/waisidx_03/21cfr312_03.html
- Can be sponsored by firms, NIH (Commercial IND) or individual investigators (Research IND)

IND - General

- “FDA’s primary objectives in reviewing an IND are, to assure the safety and rights of subjects, and in Phase 2 and 3, help assure that the quality of the scientific evaluation of drugs is adequate to permit an evaluation of the drug’s effectiveness and safety.” (21 CFR 312.22)
- Unlike other drug applications, IND are not approved. Rather the clinical studies are either allowed to begin or are placed on Clinical Hold.
- New INDs, unless waived, are required to have a 30-day safety waiting period.
There are 4 general types of INDs:

- Regular or Research IND
 - The most common type of IND
 - Used to investigate the use of a substance in humans
- Emergency Use IND
 - Allows the use of an unapproved drug in an emergency situation (one patient, single use)
- Treatment IND
 - Used to allow patient access to a promising new drug while it is still under review by the FDA
- Emergency Care IND
 - Pre-approved protocol, waiver of consent

Phase 1

- First introduction into humans to determine metabolism and pharmacological actions, side effects associated with increasing dosing
- Includes studies of drug metabolism, structure activity relationships, mechanism of action in humans, & drugs used as research tools to explore biological phenomena or disease processes
- Generally small numbers of patients <100 total

Phase 2

- Initial evaluation of effectiveness and safety; e.g., determination of dose(s), end-points, short-term side effects to monitor
- Generally several hundred patients in well-controlled (e.g., placebo controlled) studies

Phase 3

- Pivotal clinical studies to support safety and effectiveness of the drug
- Generally large well-controlled studies.

INDs generally are required to contain sufficient information in the following three categories to permit an assessment as to whether the investigational drug is safe for testing in humans for the intended use:

- Animal pharmacological and toxicological
- Manufacture, composition, controls, and stability (CMC)
- Clinical protocol(s) and list of investigators

In General

- A description of the drug substance, including its physical, chemical, or biological characterization
- List of components in the investigational drug, including those used in the manufacture of the drug but are later removed (e.g., solvents, processing aids)
- Description of the placebo
- Name & place of manufacture of both the drug substance & investigational drug being administered in the subject
- General method of preparation
- Analytical methods and limits to assure the identity, strength, quality, and purity
- Packaging info
- Stability information
- Environmental Assessment - most likely qualifies for categorical exclusion under 21 CFR 25.31
INDs - CMC Expectations

- Must relate the investigation drug administered in humans to the drug used in animal studies to support safety.
- Changes in manufacture and formulations are expected. IND sponsors must assess the equivalency of the drug after the change. Bridging studies may be necessary.
- May reference DMF, with appropriate LOA, for this information

IND - CMC Expectations

- Phase 1
 - Guidance for Industry - Content and Format of Investigational New Drugs (INDs) for Phase 1 studies of drugs, including Well-Characterized, Therapeutic, Biotechnology-derived Products (Nov. 1995)
 - Emphasis on information needed to assess safety of subjects in proposed study
 - Any unknown or impure components
 - Toxicity of the compound
 - Investigational drug characteristics of potential health hazard
 - Stability of the investigational drug throughout the proposed study
 - Methods and limits to assure ID, quality, purity, & strength of the investigational drug
 - Poorly characterized master or working cell bank
 - Detailed information on the manufacture, characterization, specifications & test methods, and long-term stability are not expected until Phase 2/Phase 3
 - Enough stability for the length of Phase 1 study to assure that the investigational drug is within acceptable chemical & physical limits for the planned clinical & toxicological studies

IND - CMC Expectations

- Phase 2/3
 - Guidance for Industry - INDs for Phase 2 and Phase 3 Studies - Chemistry, Manufacturing, and Controls Information (May 2003)
 - More detailed descriptions of the investigational drug, method(s) of manufacture, revised methods and limits to ensure identity, quality, purity, & strength
 - Chemical structure/configuration & physical properties elucidated
 - Updated impurity information and controls
 - Representative batch formula
 - Reference standards, if needed, and tentative analytical methods & specifications established
 - More control of starting materials
 - Stability for at least the length of the clinical studies. In addition, stress studies to assess the sensitivity to pH, presence of oxygen, light, high temperatures, and high humidity.

CMC Expectations for NDAs

- Full description of the composition, manufacture, and specifications under 21 CFR 314.50(d)(1) and, for ANDAs, 21 CFR 314.94
- Must include Chemistry, Manufacturing, and Controls (CMC) info on:
 - Drug substance
 - Drug product and excipients
 - Packaging components
 - Additional information as appropriate (e.g., comparison studies)

Drug Substance (DS)*

- Full description of the drug substance
 - Identity, physical, and chemical characteristics, and Stability
 - Method of synthesis (or isolation) and purification, including appropriate selection of starting materials
 - Manufacturing process controls (quality controls)
 - Specifications (including test methods) necessary to ensure purity and drug product performance
 - Level and qualification of impurities**
 - Container closure and stability information
 - Name, address, & contact info of manufacturer
 - May reference DMF, with appropriate LOA, for this information

*regulation citation: 21 CFR 314.50(d)(1)(ii)
**ICH guidance Q3a&c

Drug Substance Stability

- Retest date or expiry assigned based upon data
 - Stability testing protocol
 - Stability testing under controlled conditions
 - Accelerated 40°C/75% RH
 - Room Temperature (RT) 25°C/60% RH
 - Tests & acceptance criteria
 - Stability indicating assay
 - Testing frequency
 - ICH Q1A
 - Container closure system representative of large bulk container/drum
 - Submission expectations
 - For NDAs:
 - 3 batches - 6 months RT and accelerated data
 - May statistically project expiry up to 6 months past RT data (trending!)
 - For ANDAs:
 - 1 batch - 3 months accelerated
 - 3 months satisfactory accelerated data may permit 24 months expiry
Pharmaceutical Quality Assessment

Drug Product*
- The marketed dosage form designed to consistently deliver the drug substance at the desired rate
- Complexity may depend upon:
 - Physico-chemical, thermal stability of the formulation components
 - Route of administration
 - Site of action
 - Dosage form
 - Drug delivery system

*Regulation citation: 21 CFR 314.3(b)

Drug Product (DP)*
- Description & composition/formulation of the DP
 - A list of all components used in the manufacture of the DP, even if removed during manufacturing (e.g., solvents)
 - Composition of the drug product
 - Quantitative composition of drug product
 - List sub-formulations separately (e.g., tablet coating, mixture of IR and MR granules)
 - List tracers
 - Proprietary mixtures such as colors or flavors can be listed by their proprietary name (e.g., DMF)
 - Excipients on the “inactive ingredient list” for the amount and dosage form used do not need to be qualified

*Regulation citation: 21 CFR 314.50(d)(1)(ii)

Drug Product (cont.)
- Name, address, & contact info of the DP manufacturer(s)
- Description of the manufacturing & packaging processes, including process controls
- Container closure system
- Sterility assurance for sterile products
- Guidance:
 - http://www.fda.gov/cder/guidance/all517e.pdf

Drug Delivery Systems, if appropriate
- Modified release dosage forms
- Transdermal patches
- Oral inhalation drug products

Environmental Assessment
- Regulation citations: 21 CFR 25.30, 25.31, & 25.40
- Guidance for Industry for the submission of Environmental Assessment for Drug Applications and supplements (Rev. 1995)

Environmental Assessment

Drug Product Stability (shelf life)*
- To establish expiry based upon data
- Stability Protocol:
 - Storage Conditions
 - Room temperature (RT) (25ºC/60% relative humidity)
 - Accelerated (40ºC/75% relative humidity)
 - Tests & acceptance criteria
 - Stability indicating assay
 - Testing frequency
 - ICH Q1A
 - Submission expectations
 - For NDAs
 - 3 batches - 6 months RT and accelerated data
 - For ANDAs
 - 1 batch - 3 months accelerated
 - 3 months satisfactory accelerated data may permit 24 months expiry

*see ICH guidance Q1

Drug Product - Specifications
- Specifications are the quality standards (i.e., tests, analytical procedures, & acceptance criteria) provided in the application to ensure the quality and performance of the DS, DP, intermediates, raw materials, reagents, container closure systems, etc. in order to assure safety and efficacy
- Examples for solid oral dosage forms may include:
 - Appearance
 - Assay/potency
 - In-vitro dissolution or disintegration test
 - Impurity profile
 - Content uniformity
 - Other critical quality attributes, as appropriate
- USP monograph/public standards are considered minimum requirements
- Additional specifications may be needed (e.g., impurities)

Additional considerations
- All facilities used in the manufacture of the drug (i.e., DS, DP, packagers, testers) should be ready for inspection upon submission of the application
- Facilities should operate under Current Good Manufacturing Practices (CGMPs)
- CGMP Regulations 21 CFR 210 & 211
- CGMP Guidelines
 - http://www.fda.gov/cder/guidance/index.html#CGMPs-En
- Inspection will evaluate conformance to CGMPs
Pharmaceutical Quality Assessment

References

- Content and format of an application – 21 CFR 314.50
- Guidances (including ICH):
 - MaPPs: http://www.fda.gov/cder/mapp.htm
 - GMPs: http://www.fda.gov/cder/regulatory/applications/compliance.htm
- Additional helpful information:
 - http://www.fda.gov/cder/regulatory/default.htm#Regulatory

FDA Quality Initiatives

- 2004
 - 21st Century Initiative
 - Critical Path Initiative
- 2005
 - ONDQA’s PQAS & CMC Pilot Program (QbD)
- 2006
 - ICH 21st C. Initiative
 - ICH Q9 Finalized
- 2007
 - AAPS/ISPE/FDA Quality Initiatives Workshop

FDA View on QbD

- Quality by Design is:
 - Scientific, risk-based, holistic and proactive approach to pharmaceutical development
 - Deliberate design effort from product conception through commercialization
 - Full understanding of how product attributes and process relate to product performance

 QbD information and conclusions should be shared with FDA

QbD System

- Define desired product performance upfront; identify product CQAs
- Design formulation and process to meet product CQAs
- Understand impact of material attributes and process parameters on product CQAs
- Continually monitor and update process to assure consistent quality
- Identify and control sources of variability in material and process

Why QbD?

- Higher level of assurance of product quality
- Cost saving and efficiency for industry and regulators
- Facilitate innovation to address unmet medical needs
- Increase efficiency of manufacturing process and reduce manufacturing cost and product rejects
- Minimize potential compliance actions, costly penalties and recalls
- Enhance opportunities for first cycle approval
- Streamline post approval manufacturing changes and regulatory processes
- More focused PAI and post approval CGMP inspections
- Opportunities for continual improvement
Pharmaceutical Quality Assessment

Design Space

- **Definition**
 - The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality
 - Traditional one dimensional process range doesn’t meet Q8 definition and will not lead to “regulatory flexibility”
- **Regulatory Significance**
 - Working within the design space is not considered as a change
- **Important to Notice**
 - Design space is proposed by the applicant and is subject to regulatory assessment and approval.

Elements of a Design Space

- **(1) Design Criteria**
- **(2) Design Space**
 - Material Attributes
 - Process Parameters
- **(3) Linkage**
 - Qualitative or Quantitative

Elements of a Design Space – with Process Analytical Technologies (PAT)

- **(2) Design Space**
- **(1) Design Criteria**
- **(3) Linkage**
 - Monitored Parameters or Attributes
- **PAT**

Quality Control Strategy

- **Quality Control Strategy encompasses design Space, process controls and specifications.**
- **Specifications**
 - (Raw Materials, Intermediates, Product)

Conclusions

- **The current system is adequate for regulatory submission**
 - Quality is assured by testing and inspection
 - Considerable regulatory oversight
- **However, QbD is the desired approach**
 - QbD principles should result in a higher level of assurance of product quality
 - Additional product and process understanding may result in regulatory flexibility
- **Focus remains on availability of safe, effective and high quality pharmaceuticals**

83
NOTES PAGE- Closing Remarks: Contacts and Answers to your questions
Shirley Murphy, M.D.
Director, Office of Translational Sciences, CDER
How to find FDA information fast

Shirley Murphy, M.D.

• Much of what FDA does is in the public domain
• www.fda.gov has a wealth of information
 – Drugs – product information and reviews
 – Advisory Committees – transcript and slides
 – Guidance Documents – how FDA communicates it’s best thinking with the outside world
Contact: Cathy A. Allen, MPH, (301) 427-7001

FDA Advisory Committees

Meeting Calendars
2007 Confirmed Dates

FDA Guidance Documents

Search for Guidance Documents:

Guidance Arranged by Subject
“You will never work at a more interesting place than the FDA”

Jane Henney, M.D.
Personal communication 2002
<table>
<thead>
<tr>
<th>TITLE OF PAGE</th>
<th>URL ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDER Homepage</td>
<td>http://www.fda.gov/cder/</td>
</tr>
<tr>
<td>CDER Organization Charts and Directories</td>
<td>http://www.fda.gov/cder/cderorg.htm</td>
</tr>
<tr>
<td>Pharmacology and Toxicology Contacts</td>
<td>http://www.fda.gov/cder/PharmTox/contact.htm</td>
</tr>
<tr>
<td>Pharmacology and Toxicology Guidances</td>
<td>http://www.fda.gov/cder/guidance/#Pharmacology/Toxicology</td>
</tr>
<tr>
<td>Counterterrorism</td>
<td>http://www.fda.gov/oc/opacom/hottopics/bioterrorism.html</td>
</tr>
<tr>
<td>Clinical Trials</td>
<td>http://www.fda.gov/oashi/clinicaltrials/default.htm</td>
</tr>
<tr>
<td>Division of Scientific Investigations</td>
<td>http://www.fda.gov/cder/Offices/DSI/goodLabPractice.htm</td>
</tr>
<tr>
<td>Office of New Drugs and Quality Assessment</td>
<td>http://www.fda.gov/cder/Offices/ONDQA/default.htm</td>
</tr>
<tr>
<td>Bioresearch Monitoring Information System</td>
<td>http://www.accessdata.fda.gov/scripts/cder/bmis/</td>
</tr>
<tr>
<td>Clinical Investigator Inspection List</td>
<td>http://www.accessdata.fda.gov/scripts/cder/cliil/</td>
</tr>
<tr>
<td>CDER Pre-IND Consultation Contacts</td>
<td>http://www.fda.gov/cder/ode4/preind/Pre-INDConsultationList.pdf</td>
</tr>
</tbody>
</table>