Artemis Function in DNA repair and Immunogenesis

DNA REPAIR VIDEOCONFERENCE

Tuesday, June 7th 2009

Steven M. Yannone
Lawrence Berkeley National Lab
A founder mutation in Artemis, an SNM1-like protein, causes SCID in Athabascan-speaking Native Americans.

Intersect of DNA Repair and Immunity

V(D)J Recombination

RAG 1/RAG2

Hairpin Opening

Artemis
Ku70/80
DNA-PKcs

Ligase IV/XRCC4

Essential for B and T Cell Maturation

Non-Homologous End Joining

Double-Strand Break

Unknown? Processing?

Critical for Cellular Survival
Treating Immunodeficiency in SCDA Children

The Problem

- Bone marrow transplantation is the only effective therapy for SCID.
- Both RAG and Artemis mutations present clinically as B-T- NK+ SCID.
- Effective bone marrow transplant requires immunoablative therapy (X-Rays, Chemotherapies)

RAG SCID: Immunoablation - better BMT engraftment.

Artemis SCID: Immunoablation - poor prognosis.

Can defining Artemis substrates allow us to identify a less toxic immunoablative therapy for Artemis-deficient SCID children?
Artemis Defects are Unlike other NHEJ Defects

Like all NHEJ defects: SCIDA Cells are Radiation Sensitive

Unlike Other NHEJ defects: Double-Strand Break Repair is NOT Grossly Defective in SCIDA cells

Hypothesis: Artemis function is essential for repair of a subset of DSBs.
SCIDA Cells are Not Equally Sensitive to IR and Etoposide Induced DSBs

X-Rays

- Heterogeneous DSBs (~50% 3-PG termini)

- Damage dose monitored by phosphorylation events

Etoposide

- Homogeneous DSBs 5’ blocked termini

![Graphs showing survival fraction vs. dose for X-Rays and Etoposide treatments]
So What Are Artemis Substrates In Vivo?

1) Only a small subset of IR induced DSBs require Artemis.

2) Are more abundant after IR than etoposide treatments.

3) Are a significant determinant of cellular survival.

Characteristics of IR DSBs

- Heterogeneous Breaks and Termini
- Clustered Damage on DNA
- Randomly Distributed in Genome
- 3’ Phosphoglycolates at Termini (~50%)
Artemis Efficiently Removes 3’ Blocking Groups

Artemis Registers nuclease on ds/ss DNA transition

36/23

42/23

48/23

Cleavage at ss/ds +5

APE1 and TDP1
Very Inefficient

Artemis can remove blocking moieties by ‘bypass’

36/27

36/23

36/21

X = -PG or -OH, or P-Tyr
Artemis Biochemical activities

- Artemis activity is strictly dependent on DNA-PK and ATP
- Artemis/DNA-PK can efficiently remove 3’ blocking moieties on a 3’ overhang via bypass.
- Artemis/DNA-PK is processive and can make multiple cuts

Hypothesis: Artemis functions to remove 3’ blocking groups at DSBs.
3’ Phosphoglycololate-Inducing Drugs

Are Treatments causing more 3’ blocking groups more toxic?

~ 50% PG ~ 75% PG ~ 100% PG

Toxicity does NOT obviously trend with PG induction.
Inverted Repeat

1) Would certainly be a small fraction of total DSBs.

2) Is consistent with Artemis substrate specificity known from V(D)J recombination (non-redundant).

3) Hairpin formation has long been suspected to be the cause of genomic instability arising from inverted repeats.

4) Consistent sequence independence of X-rays as opposed to drugs.

5) Slow 3’-PG removal may encourage hairpin formation by promoting 5’-3’ resections.
Take-Home Messages

- Artemis is only active in the context of DNA-PK.
- SCIDA cells are marginally defective in gross DSB repair.
- Artemis functions on a subset of DSBs in the cell.
- Not all DSBs are equally toxic to SCIDA cells.
- Derivative hairpin structures may be an Artemis substrate.
Acknowledgements

Mort Cowan (UCSF)
Larry Povirk (VCU)

LBNL
John Tainer
Joe W. Gray

Yannone Lab
Junhua Wang
Misako Stillion

Priscilla Cooper
Janice M. Pluth

Imran Khan
Greg Langland

Previous Funding
DOE Low Dose Program
DOD Training Grant (GL)