NAD$^+$ supplementation and DNA repair as therapeutic strategies in Alzheimer’s disease

Yujun Hou
Mentor: Vilhelm A. Bohr

2/20/2018
Alzheimer’s disease (AD)
Alzheimer’s disease and DNA repair

DNA repair activity

Weissman et al, 2007, NAR
DNA polymerase β in human brain

Inferior parietal lobule

Cerebellum

Polymerase $\beta^{+/-}$

Weissman et al, 2007, NAR
Sykora et al, 2015, NAR.
3xTgAD/Polβ°/− mice have many more similarities to human AD than 3xTgAD mice

- Synergistic loss of hippocampal volume
- Deficient neurogenesis
- Neuronal cell death
- Loss of synaptic plasticity
- Memory loss
- Higher similarity to human diseases
- Higher similarity to human AD
- Breakdown of mitochondrial bioenergetics
- Diabetes profile
- Deficient sense of smelling

Sykora et al NAR 2015
Misiak et al, Aging Cell 2016
NAD\(^+\) links DNA repair and mitophagy to mitochondrial maintenance

Genome maintenance
Mitochondrial homeostasis
Healthy aging

Fang EF et al., Nature Reviews MCB, 2016
Fang EF and Bohr VA, Autophagy, 2016
NAD⁺/NADH ratio is lower in AD mice and increases after NR treatment

Modified from Fang et al, 2016, Cell Metabolism.
Experimental Design

Nicotinamide Riboside (NR)

- Treatment
 - WT
 - Polβ
 - AD
 - AD/Polβ
 - NR
 - Veh

16-18 months

Behavior Tests
- Cognitive Tests
- Locomotor Tests
- Metabolic Tests
- Anxiety Tests
- Motor Tests

Mechanism
- Electrophysiology
- Biochemistry
- Immunostaining
- Microarray
- ...
NR improves learning and memory in 3xTgAD and 3xTgAD/Polβ+/− mice

Morris Water Maze test

Hou Y et al., PNAS, 2018
NR ameliorates cognition and memory deficiency in 3xTgAD and 3xTgAD/Polβ+/- mice

Object Recognition test

Y-maze

Hou Y et al., PNAS, 2018
Pathway analysis bases on gene expression changes

Hou Y et al., PNAS, 2018
NR improves synaptic function in long-term potentiation

Hou Y et al., PNAS, 2018
NR decreases neuroinflammation in 3xTgAD and 3xTgAD/Polβ\(^{+/-}\) mice.
NR decreases tau phosphorylation in 3xTgAD and 3xTgAD/Polβ+/− mice

Hou Y et al., PNAS, 2018
NR doesn’t decrease Aβ in 3xTgAD and 3xTgAD/Polβ+/− mice

Hou Y et al., PNAS, 2018
DNA damage was decreased after NR treatment in 3xTgAD and 3xTgAD/Polβ+/- mice

Hou Y et al., PNAS, 2018
Oxidative damage and mitochondrial ROS was decreased after NR treatment in AD human fibroblasts

Hou Y et al., PNAS, 2018
SIRT3 and SIRT6 levels are restored after NR treatment in 3xTgAD and 3xTgAD/Polβ+/− mice

Hou Y et al., PNAS, 2018
Summary

DNA Damage

PARP1

NAD^+

SIRT6

SIRT3

NR

↓

Neurogenesis

Neuronal dysfunction

Neuro-inflammation

Mitochondrial dysfunction

Alzheimer’s Disease

Hou Y et al., PNAS, 2018
Summary

- NAD⁺/NADH ratio decreases in Polβ⁺/⁻, 3xTgAD and 3xTgAD/Polβ⁺/⁻ mice and increases after NR treatment.
- NAD⁺ supplementation improves learning and memory.
- NAD⁺ supplementation dramatically improve long-term potentiation.
- NAD⁺ supplementation decreases neuroinflammation and tau phosphorylation but not Aβ in 3xTgAD and 3xTgAD/Polβ⁺/⁻ mice.
- DNA damage was decreased after NR treatment in 3xTgAD and 3xTgAD/Polβ⁺/⁻ mice.

*Red means NR has better effects in 3xTgAD/Polβ⁺/⁻ than 3xTgAD mice
Future plan

- Investigate neuroinflammatory mechanisms in Polβ deficiency or AD models. Investigate the ability of NR or mitophagy inducers to specifically inhibit neuroinflammation.
- Investigate the effects of mitophagy inducers on mitochondrial function in AD mice.
- Generate another way to determine the role of BER by deleting another BER gene in an AD mouse model.

Modified from Hou et al., Mechanisms of Ageing and Development, 2016
Acknowledgement

Dr. Vilhelm A. Bohr
Dr. Deborah L. Croteau
Sofie Lautrup
Stephanie Cordonnier
Beverly Baptiste
Eduardo Zavala

Collaborators:

LNS
Dr. Mark P. Mattson
Yue Wang

LCI
Jennifer F. O’Connell

LMBI
Kanako Moritoh

Thanks to all
LMG members!

Thank you for your attention!