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Environmentally-Induced Bulky DNA Lesions

From DNA Repair and Mutagenesis , Friedberg, E. C. ed. 

BPDE-DNA Adduct
Cyclobutane Pyrimidine
Dimer (CPD)



Crystal Structure of BPDE-Adduct in Ternary Complex with a DNA Polymerase

Ling et al.,  PNAS 101, p2265-2269 (2004) 
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BPDE-induced Inhibition of DNA Synthesis
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Xeroderma Pigmentosum (XP)

The TLS polymerase Pol is defective in XP-Variant patients

From DNA Repair and Mutagenesis , Friedberg, E. C. ed. 



Replicative DNA Polymerases:
High fidelity on undamaged DNA template.

Pol, a Trans-Lesion Synthesis (TLS) DNA Polymerase:
Low fidelity on undamaged DNA, but can use UV-damaged DNA as 
template.



Role of Pol in Replicating UV-Induced Damage
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TLS Polymerases In Eukaryotes:

REV1, Pol, Pol, Polк

Pol bypasses TT dimers (but not BPDE adducts) in vitro.

Pol bypasses BPDE adducts in vitro.
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Chk1 Phosphorylation is Coincident with  PCNA mono-ubiquitination
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Role of Chk1 in Rad18 Phosphorylation
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Cdc7 involved in initiation.

Once considered a candidate target of S-checkpoint.
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Role of Cdc7 in recovery?
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Rad18 regulated by phosphorylation.

Rad18 involved in recovery from replication stress.

Epistatic relationship between Rad6 and Cdc7.

Is Cdc7 a Rad18-directed kinase?



DDK Phosphorylates Rad18-Rad6 Complex

Rad18

Rad18
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Autoradiogram:

Coomassie:



Recombinant  Rad18 fragments



Dbf4-Cdc7 Phosphorylates Rad18 in vitro
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Pol-binding motif of Rad18



Alanine-scanning of S-Box



Species Conservation of Rad18 S434



Rad18 S434 Phosphorylation in Intact Cells



DDK Ablation inhibits S434 phosphorylation and Rad18-Pol association
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Relationship of Rad18-Cdc7 during genotoxin response?



UV-Induced Association of Rad18 with Cdc7



UV-Induced Phosphorylation of Rad18 S434



Is Cdc7 Necessary for DNA damage-induced Rad18-Pol Association?

UV-Induced Phosphorylation of Rad18 S434



UV-induced Rad18-Pol interaction is Cdc7-dependent



S434 phosphorylation Required for Association of Rad18 with Pol
but not Rad6



Rad18 S434 phosphorylation does not affect PCNA-directed E3 ligase activity
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Prediction:  DDK necessary for guiding of Pol to replication foci by Rad18



Effect of Cdc7 Depletion on Pol foci 
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Effect of S434>A and S434>E substitutions on Rad18-Pol association



Effect of S434>A and S434>E substitutions on Pol foci 
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Effect of S434>A and S434>E substitutions on Pol foci 



XPV cells are often UV-sensitive.

Does Phosphorylation-resistant Rad18 Phenocopy XPV?

Biological Consequences of Failure to Recruit Pol Efficiently



Effect of Rad18 S434>A substitution  on UV-tolerance 



Effect of Rad18 S434>A substitution  on UV-tolerance 



Additional Phosphorylation Sites in Pol-Binding Domain of Rad18
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JNK Phosphorylates Rad18 in vitro



JNK Phosphorylates Rad18 in vitro



UV-inducible Rad18 S409 Phosphorylation in Intact Cells



UV-Induced Rad18 S409 Phosphorylation is JNK-Dependent 



Rad18 S409A Expressing Cells are UV-sensitive
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Relationship between Chk1 signaling, DDK, JNK and Rad18?

Mechanism of association between Rad18 and Pol

SIgnificance of Rad18 Phosphorylation in vivo?

Role of Rad18 Phosphorylation in regulating Pol, Pol, Rev1?

Does Rad18 phosphorylation influence other (non-TLS)
DNA Repair pathways?

Rad18 Phosphorylation – Further Questions:



Complementation of RAD18-/- cells with Rad18 
S434A induces SCE 
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Rad18 regulation as a function of the cell cycle?

Rad18 regulation by stresses that activate SAPK pathway:

UV, Reactive Oxygen Species (ROS)



Reactive Oxygen Species (ROS)

ROS generated endogenously via aerobic metabolism.

Environmental Sources:  UVA, B[a]P

Oxidative DNA damage is implicated in cancer, aging

8-oxoG is one of most abundant DNA lesions induced by ROS

8-oxo-dG
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Swenberg et al., Tox Sci 120 130-145 (2011)



8-oxoG is highly mutagenic, bypassed accurately by Pol

Pol prevents mutagenesis due to 8-oxodG 
Haracska et al., Nat Genetics 25, p458 (2000)
McCulloch et al., NAR 37, p2830 (2009) 
Lee & Pfeifer Mut Res 641, p19 (2008)

Pol mediates TLS across non-instructional abasic sites
Choi et al. J. Mol Biol 404, p34-44 (2010)

Relationship between TLS and ROS-Induced DNA Lesions



Rad18 regulation as a function of the cell cycle?

Rad18 regulation by stresses that activate SAPK pathway:

UV, Reactive Oxygen Species (ROS)
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PCNA Mono-ubiquitination is DNA Replication-Independent
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PCNA Mono-ubiquitination is DNA Replication-Independent



PCNA Mono-ubiquitination is DNA Replication-Independent

H2O2-induced ATM hyper-phosphorylation:

Phenocopied by Pol depletion, 
Corrected by Rad18 or Pol over-expression (not Pol)



Single Cell Gel Electrophoresis 'Comet'  Assay
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Single Cell Gel Electrophoresis 'Comet'  Assay
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‘Tail moment': %DNA in tail x length of tail
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Hypothetical Role of Rad18 in SSB Repair
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Conclusion:

Replication Fork-Independent Mechanisms of Rad18-Pol activation.

Ongoing:

Differential contribution of PCNA-Ub and Pol chaperone activities of Rad18 
in G1 and S-phase?

Roles of Rad18 in Tolerance of ROS-Induced DNA Damage in Post-Mitotic Cells?

Synthetic Lethality between Rad18 and DSB Repair in Repair of ROS-Induced 
DNA Damage?

Role of Rad18 PTM in Cell Cycle-Specific Responses to DNA Damage?
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