Insights into DNA damage response signaling from an oncovirus

Sumita Bhaduri-McIntosh, M.D., Ph.D.
Pediatric Infectious Diseases & Molecular Genetics and Microbiology
Oncogene induced senescence
Circumventing DDR during oncogene-driven cell proliferation

• For oncogenes to successfully drive cell proliferation and cancer, DNA damage checkpoint barriers need to be overridden

• Mechanisms of DDR attenuation: inherited versus sporadic cancers

• STAT3 – transcription factor
 – frequently activated by growth factors and cytokines
 – prosurvival, angiogenesis, metastasis
 – constitutively active in many human cancers
 – precise contribution to tumorigenesis unknown
Does/Can STAT3 mediate DDR suppression during the initial rounds of oncogene-driven cell proliferation?
Epstein-Barr virus (EBV)

- Post-transplant lymphomas, AIDS-lymphomas, Burkitt lymphoma, NPC, Hodgkin lymphomas, T/NK cell lymphomas, gastric carcinomas

- Oncogenic human gammaherpesvirus
 - co-evolved with humans, infects nearly everyone
 - excellent means to uncover fundamental cellular processes
 - encodes several oncoproteins, drives cellular DNA replication, causes cellular DNA damage
 - post-transplant lymphomas develop within weeks of infection
 - primary human B cells + EBV………cell lines in 2 weeks
 - STAT3 constitutively active in EBV-related cancers
Does STAT3 mediate DDR suppression during the initial rounds of EBV oncogene-driven cell proliferation?
EBV infection results in early STAT3 activation and increased expression.

Koganti et al., J. Virology, 2014
Inhibition of STAT3 results in fewer EBV+ cells

Day 4 Culture

Koganti et al., J. Virology, 2014
STAT3 is necessary for outgrowth of cell lines

Koganti et al., J. Virology, 2014
STAT3 is necessary for survival of LMP1+ cells

- **Graph 1:**
 - **X-axis:** LMP1-pos, LMP1-neg
 - **Y-axis:** % Annexin V-pos cells
 - **Legend:**
 - EBV
 - EBV + AG490
 - AD-HIES B cells + EBV
 - **Day 2:**
 - LMP1-pos: EBV, EBV + AG490, AD-HIES B cells + EBV
 - LMP1-neg: EBV, EBV + AG490, AD-HIES B cells + EBV
 - **Day 3:**
 - LMP1-pos: EBV, EBV + AG490, AD-HIES B cells + EBV
 - LMP1-neg: EBV, EBV + AG490, AD-HIES B cells + EBV
 - Stars for significant differences

- **Graph 2:**
 - **X-axis:** EBV, EBV + AG490
 - **Y-axis:** Relative quantity of mRNA
 - **Legend:**
 - N.S.
 - **Results:**
 - EBV: 1.4
 - EBV + AG490: 1.2

Koganti et al., J. Virology, 2014
AG490 inhibits STAT3 and its targets including pro-survival genes

Koganti et al., J. Virology, 2014
STAT3 is necessary for proliferation past the S phase
.........or impairment of STAT3 causes S phase delay/arrest

Koganti et al., J. Virology, 2014
STAT3 is necessary for proliferation past the S phase
or impairment of STAT3 causes S phase delay/arrest

Koganti et al., PNAS, 2014
STAT3 blocks signaling downstream of ATR

Koganti et al., PNAS, 2014
STAT3 suppresses pChk1 levels

Healthy B + EBV, LMP1 pos
AD
- HIES
B + EBV, LMP1 pos
Un-infected
AD
- HIES B
cells
Un-infected
healthy B
cells

Day 4 Culture

pChk1

Healthy LCL

AD-HIES LCL

pChk1

β-Actin

LCL 1
LCL 2

pChk1

β-Actin

siRNA
Sc
STAT3
Sc
STAT3

Koganti et al., PNAS, 2014
Proliferating EBV-infected cells in vivo show high STAT3 but low pChk1

Koganti et al., PNAS, 2014
STAT3 functions via Chk1 to promote progression of EBV-infected cells past the S phase.

Koganti et al., PNAS, 2014
Cells with functional STAT3 demonstrate loss of nuclear Claspin

Day 4

EBNA2 Claspin DAPI
EBV

EBV E+A

Mean nuclear fluorescence (relative unit)

Claspin mRNA (relative level)

Claspin

EBV E+A

EBV E+A

EBV

Time (hr)

0 4 8 12 24 48 72 96

pATR

Claspin

β-actin

7.8 16.1

Koganti et al., PNAS, 2014
EBV infection in the presence of STAT3 results in caspase 7 activation.

Koganti et al., PNAS, 2014
Caspase inhibition causes Claspin recovery and failure of EBV-mediated growth transformation

Day 4

<table>
<thead>
<tr>
<th>ZVAD-FMK (µM)</th>
<th>Claspin</th>
<th>pChk1</th>
<th>β-Actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of live cells

- Donor 1+EBV
- Donor 1+EBV+ZVAD
- Donor 2+EBV
- Donor 2+EBV+ZVAD

Days post-infection

Koganti et al., PNAS, 2014
Inhibition of Caspase 7 (but not Caspase 6) causes recovery of Claspin and pChk1

Koganti et al., PNAS, 2014
Model for DDR suppression during the initial rounds of EBV-oncogene-driven cell proliferation
Summary

- Link STAT3 to DDR suppression during oncogene-driven cell proliferation

- A newly discovered function for STAT3 (constitutively active in most cancers)

- STAT3 mediated relaxation of the intra-S phase checkpoint is a previously unknown mechanism for genomic instability

- Caspase 7 in a non-apoptotic role

- STAT3, a major transcription factor, is central to cell proliferation – implications beyond EBV infection and tumorigenesis
Contributions

Siva Koganti, Ph.D.
Xiaofan Li, Ph.D.
Eric Burton, B.S.
Sal Spadaro, B.S., B.A.
Erik Hill, Ph.D.
Shane McAllister, M.D., Ph.D.
Joyce Hui-Yuen, M.D., M.S.
Sameer Lapsia, M.D.
Cynthia Megyola, M.S.

Collaborators:
Alexandra Freeman, M.D.
Steven Holland, M.D.
NIAID, NIH, USA

Jizu Zhi, Ph.D.
Stony Brook University, USA

Paul Farrell, Ph.D.
Imperial College, UK

Benjamin Gardner, M.D.
Yale University, USA

Stuart Tangye, Ph.D.
Garvan Institute, Australia

Friedrich Grässer, Ph.D.
Universitätsklinkum des Saarlandes, Germany

Funding:
NIAID
NICHD
Charles Hood Foundation
Yale Center for Clinical Investigation
American Academy of Pediatrics
Stony Brook Research Foundation