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UV-damaged DNA binding protein (UV-DDB)

UV-damaged-DNA binding protein (UV-DDB) is a heterodimer composed 
of two subunits, DDB1 and DDB2, and plays a key role in DNA damage 
recognition at an early stage of global genome nucleotide excision 
repair (GGR) pathway.

Mutations in DDB2 are responsible for xeroderma pigmentosum group E 
(XP-E).

UV-DDB is integrated in a complex including Cul4A and Roc1, and 
displays ubiquitin ligase (E3) activity.
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recognition at an early stage of global genome nucleotide excision 
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Functions of the DDB2 E3 complex in the 
damage-recognition step of GGR

Regulatory mechanisms for the 
E3 activity of the DDB2 complex



Mutant DDB2 derived from XP-E patients
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The K244E DDB2 complex displays E3 activity
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The wild-type, but not K244E DDB2 complex is associated 
with core histones in a UV-dependent manner
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The wild-type, but not K244E DDB2 complex is associated 
with core histones in a UV-dependent manner
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Wild-type, but not K244E DDB2 is distributed 
to UV-damaged sites in chromatin in vivo
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Schematic representation of the strategy to measure the
in vitro binding of DDB2 complex to UV-damaged chromatin

Mock or UV irradiated DNA
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Conclusions
Both DNA-binding and E3 activities of the DDB2 complex are required to promote 
GGR in chromatin

K244E DDB2 was able to form the cullin-based E3 complex. However, this complex 
did not bind to nucleosomes in the UV-irradiated cells.
The K244E DDB2 complex did not bind to the UV-damaged DNA or the nucleosomes
bearing the UV-irradiated DNA, and consequently was not able to mediate the 
ubiquitylation of the nucleosomes assembled on UV-damaged DNA.



Functions of the DDB2 E3 complex in the 
DNA damage-recognition step of GGR
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Another possibility…

“The DDB2 complex-mediated ubiquitylation around damaged sites 
in chromatin may serve as a signal for the recruitment of other NER factors.”
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Schematic representation of the strategy
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Conclusions

Implication for the DDB2 complex-mediated ubiquitylation in GGR

The DDB2 complex-mediated ubiquitylation around the damaged sites 
in chromatin functions in the signaling pathway during the recognition 
step in GGR.

Both DNA-binding and E3 activities of the DDB2 complex are required to promote 
GGR in chromatin

K244E DDB2 was able to form the cullin-based E3 complex. However, this complex 
did not bind to nucleosomes in the UV-irradiated cells.
The K244E DDB2 complex did not bind to the UV-damaged DNA or the nucleosomes
bearing the UV-irradiated DNA, and consequently was not able to mediate the 
ubiquitylation of the nucleosomes assembled on UV-damaged DNA.

The DDB2 complex-mediated ubiquitylation around damaged sites in nucleosomes
enhanced the recruitment of XPA to lesions.



Regulatory mechanisms for the 
E3 activity of the DDB2 complex
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The wild-type, but not K244E DDB2 complex interacts 
with Ku in a UV-dependent manner
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Schematic representation of the strategy to measure
the effect of XPC/HR23B or Ku on the DDB2 E3 activity
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Conclusions
Both DNA-binding and E3 activities of the DDB2 complex are required to promote 
GGR in chromatin

Various regulatory mechanisms for the E3 activity of the DDB2 complex

Implication for the DDB2 complex-mediated ubiquitylation in GG-NER

The DDB2 complex-mediated ubiquitylation around the damaged sites 
in chromatin functions in the signaling pathway during the recognition 
step in GGR.

K244E DDB2 was able to form the cullin-based E3 complex. However, this complex 
did not bind to nucleosomes in the UV-irradiated cells.

The K244E DDB2 complex did not bind to the UV-damaged DNA or the nucleosomes
bearing the UV-irradiated DNA, and consequently was not able to mediate the 
ubiquitylation of the nucleosomes assembled on UV-damaged DNA.

CSN is released from the DDB2 complex when the complex binds to lesions. 
Correspondingly, the E3 activity of the DDB2 complex was stimulated.
XPC stimulated the E3 activity of the DDB2 complex especially at damaged sites 
by stabilizing it.
Ku negatively regulates the E3 activity of the DDB2 complex by destabilizing it.

The DDB2 complex-mediated ubiquitylation around damaged sites in nucleosomes
enhanced the recruitment of XPA to lesions.

Ku particularly inhibits the extensive autoubiquitylation of DDB2, and 
consequently prevents the dissociation of the DDB2 complex from 
damaged sites.
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Topics:
The DDB2 complex-mediated ubiquitylation around DNA damage 
is oppositely regulated by XPC and Ku, and contributes to 
the recruitment of XPA

MMXD, a TFIIH-independent XPD-MMS19 protein complex involved 
in chromosome segregation



MMXD, a TFIIH-independent XPD-MMS19 protein 
complex involved in chromosome segregation

Shinsuke Ito
Li Jing Tan
Daisuke Andoh
Takashi Narita
Mineaki Seki

Ito S et al., Mol Cell, 2010
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Multi-functions of XPD protein
- is one of the components of TFIIH, which has roles in nucleotide excision repair,
basal transcription, transactivation and possibly cell cycle control.

- has a 5’ – 3’ DNA helicase and ATPase activities essential for nucleotide excision
repair but dispensable for transcription. (F Coin et al., Mol Cell 26: 245, 2007)

- directly interacts with p44 and MAT1, serves as molecular bridge of holo-TFIIH, and
facilitate optimal transcription. (S Dubaele et al., Nat Genet 20: 184, 1998; P Schultz et
al., Cell 102: 599, 2000; B Sandrock et al., JBC 276: 35328, 2001; F Coin et al, Mol Cell
11: 1635, 2003)

- a fraction of XPD is associated with CAK but not with the core TFIIH. (JT Reardon et
al., Proc Natl Acad Sci USA 93: 6482, 1996)

-Drosophila Xpd was shown to negatively regulate CAK activity, resulting in
decreased phosphorylation of the cdk1 T-loop and inhibition of mitotic progression,
while Xpd expression was down-regulated at G2/M when cdk1 was most active (J
Chen et al., Nature 424: 228, 2003)
Lack of Drosophila Xpd also cause defects in the dynamics of mitotic spindle and
chromosomal instability, subcellular re-localizing of Cdk7 (X Li et al., Plos Genetics 
6: e1000876, 2010)



MMS19 and XPD complexes
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(MMXD)

XPD complex
(XPG-TFIIH)



Knockdown of MMS19 and MIP18 in HeLa cells

* Non-specific band



MIP18 can directly interact with MMS19 and XPD



MMS19 interacts with XPD in the region between 
the MAT1- and p44-binding domains (aa 438–637)



MMXD (MMS19-MIP18-XPD) complex



Co-localization of MIP18, MMS19 and GFP-XPD with alpha-tubulin
in the mitotic phase of HCT116 cells

Scale bar: 10 μm



Co-localization of GFP-XPD and MMS19 with alpha-tubulin, 
but not XPB in the mitotic phase of HCT116 cells

scale bar: 10μm



Enhanced frequency of abnormal mitotic spindle and chromosome
segregation in MMS19-, MIP18-, and XPD-knockdown HCT116 cells

Blue: DAPI (chromosome)
Green: alpha-tubulin
Red:cy3-prelabeled siRNA



Abnormal localization of Aurora B in the MMS19- and MIP18-knockdown HeLa cells



Enhanced frequency of abnormal nuclei in MMS19-, MIP18-, and XPD-knockdown HCT116 cells
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FAM96B is designated MIP18 (MMS19-interacting protein 18 kDa)



Possible functions of the MMXD protein complex 
in chromosome segregation

 Cohesion between sister chromatids
 Formation of centrosome and/or mitotic spindles. 
 Spindle checkpoint

Yeast yhr122w cells mutated in the putative yeast counterpart of MIP18
exhibited a chromosome instability phenotype, which is mostly associated 
with a defect in the establishment of sister chromatid cohesion. 

Subunits of cohesins and condensins harbor HEAT repeats, which are 
frequently found in proteins required for chromosome dynamics 
including chromosome segregation, chromatin remodeling, and DNA repair. 
MMS19 contains HEAT repeat. It is plausible that the HEAT repeat in MMS19 
functions with cohesins and condensins. 



Relevance of MMXD-dysfunction to clinical features
of XP-D, XP-D/CS and XP-D/TTD patients

Frequencies of abnormal nuclei at inter-phase, and aberrant mitotic
spindle and chromosomal segregation were examined in the cells
derived from patients with XPD mutations. 

XPD-patients’ cells:
XP6BE (XP-D) 
XPCS-2 (XP-D/CS)  
TTD1RO (XP-D/TTD) 

Wild-type XPD cDNA-corrected isogenic cells: 
XPD/XP6BE 
XPD/XPCS-2
XPD/TTD1RO 



Abnormal mitotic spindle and chromosome segregation in  
the metaphase cells derived from XP-D and XP-D/CS patients

Green: gamma-tubulin Red: alpha-tubulin Blue: DAPI



Abnormal mitotic spindle and chromosome segregation in the 
metaphase cells derived from XP-D, XP-D/CS and XP-D/TTD patients

Abnormal chromosome segregationAbnormal mitotic spindle



Abnormal nuclei in the interphase cells derived
from XP-D(XP6BE) and XP-D/CS(XPCS-2) patients 

Green: gamma-tubulin Blue: DAPI



Abnormal nuclei in the interphase cells derived 
from XP-D, XP-D/CS and XP-D/TTD patients



Clinical implication of MMXD-dysfunction:
The results indicate that the function of MMXD in chromosome segregation 
was affected in XP6BE (XP-D) and XPCS-2 (XP-D/CS) patients’ cells, but not 
in TTD1RO (XP-D/TTD) patient cells.

It is worth noting that these three patients had defects in NER, 
while skin tumors were detected only in XP6BE and XPCS-2 patients, 
not in TTD1RO patient. 

These findings suggest that the dysfunction of MMXD due to the XPD
mutations lead to aneuploidy and/or cell death, contributing at least partly to 
the phenotypes in XP6BE and XPCS-2 patients such as a high incidence of 
skin tumors.
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