Molecular Acrobat of DNA Translesion Synthesis

1000

Wei Yang, NIH

DNA Replication is Essential

Williams et al. (2004) Human Mol Gen

DNA Replication is Essential

Williams et al. (2004) Human Mol Gen

Conserved DNA Replicase, Proofreading & Conformational Changes

Pelletier et al. Kraut (1994) Science Doulië et al. & Ellenberger (1998) Nature Johnson, et al. & Beese (2003) PNAS Huang et al. & Harrison (1998) Science Li, et al. & Waksman (1998) EMB0 Franklyn et al., Steitz (2001) Nature

Conserved DNA Replicase, Proofreading & Conformational Changes

Pelletier et al. Kraut (1994) Science Doulië et al. & Ellenberger (1998) Nature Johnson, et al. & Beese (2003) PNAS Huang et al. & Harrison (1998) Science Li, et al. & Waksman (1998) EMB0 Franklyn et al., Steitz (2001) Nature

Naturally Occurring Roadblocks in DNA Replication Fragile Sites, Centromere and Telomere

Telomere — (TTAGGG)n

Centromere – a-satellite repeats AATAT, TTCTC

Fragile sites — > 120 breakage sites, palindromic AT-rich & simple 2-3 nt repeats

Loop 3

DNA Lesions are Unavoidable and Varied

Family	Name	Error rate	Function
A	Pol γ	10-5 to 10-6	Mitochondrial replication
B	Pol α , δ, ε, Telomer	ase 10-5 to 10-6	Nuclear DNA replication

Family	Name	Error rate	Function
A	Pol γ	10-5 to 10-6	Mitochondrial replication
	Pol v, v	10-2 to 10-4	Low fidelity, TLS
B	Pol α , δ , ε , Telomeras	e 10-5 to 10-6	Nuclear DNA replication
	Pol ζ	10-2 to 10-4	Low fidelity, TLS
X	Pol β, λ, μ, TdT	10-3 to 10-5	BER & NHEJ Repair
Y	Pol η, ι, κ, Rev1	10-2 to 10-4	TLS, Mutagenic
AEP	PrimPol	10-4	TLS, Repair?

Replication, Repair, Translesion

Family	Name	Error rate	Function
A	Pol γ	10-5 to 10-6	Mitochondrial replication
	Pol v, v	10-2 to 10-4	Low fidelity, TLS
B	Pol α , δ , ε , Telomeras	e 10-5 to 10-6	Nuclear DNA replication
	Pol ζ	10-2 to 10-4	Low fidelity, TLS
X	Pol β, λ, μ, TdT	10-3 to 10-5	Bpair
Y	Pol η, ι, κ, Rev1	10-2 to 10-4	
AEP	PrimPol	10-4	a comp

Replication, Repair, Translesion

The Active Site of hPol η is Unusually Large & Snugly Accommodates a CPD

Biertümpfel et al., Yang (2010) Nature

The Active Site of hPol η is Unusually Large & Snugly Accommodates a CPD

Biertümpfel et al., Yang (2010) Nature

The Active Site of hPol η is Unusually Large & Snugly Accommodates a CPD

Biertümpfel et al., Yang (2010) Nature

Y-family TLS polymerases: lesion accommodation and bypass

Y-family TLS polymerases: lesion accommodation and bypass

Y-family TLS polymerases: lesion accommodation and bypass

Y-family TLS polymerases: resumed replicative DNA synthesis

Family	Name	Error rate	Function
A	Pol y Pol y P	10-5 to 10-6	Mitochondrial replication
B	Pol α, δ, ε, Telomeras Pol ζ	e 10-5 to 10-6 10-2 to 10-4	Nuclear DNA replication Low fidelity, TLS
X	Pol β, λ, μ, TdT	10-3 to 10-5	BER & NHEJ Repair
Y	Pol η, ι, κ, Rev1	10-2 to 10-4	TLS, Mutagenic
AEP	PrimPol	10-4	TLS, Repair?

Replication, Repair, Translesion

Family	Name	Error rate	Function
Α	Pol γ Pol γ ֆ	10-5 to 10-6 10-2 to 10-4	Mitochondrial replication
B	Pol α , δ , ε , Telomeras Pol ζ	se 10-5 to 10-6 10-2 to 10-4	Nuclear DNA replication Low fidelity, TLS
X	Pol β, λ, μ, TdT	10-3 to 10-5	BER & NHEJ Repair
Y	Pol η, ι, κ, Rev1	10-2 to 10-4	TLS, Mutagenic
AEP	PrimPol	10-4	TLS, Repair?

Replication, Repair, Translesion

Family	Name	Error rate	Function
A	Pol γ	10-5 to 10-6	Mitochondrial replication
	Pol v, ϑ	10-2 to 10-4	Low fidelity, TLS
B	Pol α , δ , ε , Telomeras	se 10-5 to 10-6	Nuclear DNA replication
	Pol ζ	10-2 to 10-4	Low fidelity, TLS
X	Pol β, λ, μ, TdT	10-3 to 10-5	BER & NHEJ Repair
Y	Pol η, ι, κ, Rev1	10-2 to 10-4	TLS, Mutagenic
AEP	PrimPol	10-4	TLS, Repair?

Replication, Repair, Translesion

Family	Name	Error rate	Function
Α	Pol γ	10-5 to 10-6	Mitochondrial replication
	Pol v, v	10-2 to 10-4	Low fidelity, TLS
B	Pol α , δ , ε , Telome	rase 10-5 to 10-6	Nuclear DNA replication
	Pol ζ	10-2 to 10-4	Low fidelity, TLS
X	Pol β , λ , μ , TdT	10-3 to 10-5	BER & NHEJ Repair
Y	Pol η, ι, κ, Rev1	10-2 to 10-4	TLS, Mutagenic
AEP	PrimPol	10-4	TLS, Repair?

Replication, Repair, Translesion

How A Homolog of High-fidelity DNA polymerases Carries out Mutagenic DNA Synthesis

Young-Sam Lee

Pol v is Mostly Homologous to Replicases Except for a few Loops and a Lack of Proofreading

Pol v is Mostly Homologous to Replicases Except for a few Loops and a Lack of Proofreading

The Insertion in Pol v's Thumb Leads to Solvent Exposure of the Primer Strand

Pol v

Pol I

Replicative

The Insertion in Pol v's Thumb Leads to Solvent Exposure of the Primer Strand

Replicative

The Insertion in Pol v's Thumb Leads to Solvent Exposure of the Primer Strand

Replicative

A Moving Thumb of Pol v Potentially Allows Loopout and Realignment of Primer Strand

A Moving Thumb of Pol v Potentially Allows Loopout and Realignment of Primer Strand

A-family TLS polymerases: stalled DNA synthesis

A-family TLS polymerases: DNA primer loopout

A-family TLS polymerases: TLS DNA synthesis

A-family TLS polymerases: DNA primer realignment

A-family TLS polymerases: resumed replicative DNA synthesis

A-family TLS polymerases: resumed replicative DNA synthesis

Repeat Expansion: stalled DNA synthesis

Lee, Gao & Yang (2015) NSMB

A-family TLS polymerases: resumed replicative DNA synthesis

Repeat Expansion: DNA primer loopout

Lee, Gao & Yang (2015) NSMB
A-family TLS polymerases: resumed replicative DNA synthesis

Repeat Expansion: Repeat synthesis

A-family TLS polymerases: resumed replicative DNA synthesis

Repeat Expansion: DNA primer realignment

A-family TLS polymerases: resumed replicative DNA synthesis

Repeat Expansion: Repeat loopout again

A-family TLS polymerases: resumed replicative DNA synthesis

Repeat Expansion: Repeat synthesis again

The Mystery of Processive Telomere Synthesis and Repeat Addition

Telomerase = telomere reverse transcriptase (**TERT**) + telomere template RNA (**TR**)

The Mystery of Processive Telomere Synthesis and Repeat Addition

Telomerase = telomere reverse transcriptase (**TERT**) + telomere template RNA (**TR**)

Telomere Repeat can Form a Hairpin Loop

Telomere Repeat can Form a Hairpin Loop

Telomere Repeat can Form a Hairpin Loop

Telomere Synthesis & Mechanism for Repeat Addition Processivity

Telomerase = telomere reverse transcriptase (**TERT**) + telomere template RNA (**TR**)

DNA primer looping out, RNA template translocation

Incoming dGTP stabilizes the looped out primer

DNA primer realignment

DNA synthesis

DNA synthesis

Behind Every (E)Motion is Chemistry

Behind Every (E)Motion is Chemistry

Chemistry of DNA Synthesis

DNA pol η

T7 DNA pol

Biertümpfel et al., 2010 Nature

No proofreading No conformational change Doublié et al. (1998) Nature

Mg²⁺-dependent Substrate Alignment & Acid-Base Catalysis of all DNA Polymerases

1.7 Å

Mg²⁺-dependent Substrate Alignment & Acid-Base Catalysis of all DNA Polymerases

1.7 Å

Static Photographs Recapitulate Movement

Static Photographs Recapitulate Movement

To Capture Transient Intermediates of a Dynamic Process by Still Photography

To Capture Transient Intermediates of a Dynamic Process by Still Photography

To Capture Transient Intermediates of a Dynamic Process by Still Photography

THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE.

PRELIMINARY PAPER.

BY JAMES B. SUMNER.

(From the Department of Physiology and Biochemistry, Cornell University Medical College, Ithaca.)

(Received for publication, June 2, 1926.)

GS pH 6.0, 1Ca²⁺/ complex

I

Nakamura, et al., & Yang (2012) Nature

Nakamura, et al., & Yang (2012) Nature

Ground State: Misaligned Reactants

Ground State: Misaligned Reactants

Reaction Time Course: Monitor the new Bond Formation

Reaction Time Course: Monitor the new Bond Formation

Reaction Time Course: Monitor the new Bond Formation

Mg²⁺ (1 mM)

Mg²⁺ (1 mM)

Mg²⁺ (1 mM)

Mg²⁺ (1 mM)

Mn²⁺ (10 mM)

Gao & Yang, (2016) Science

Nakamura, et al., & Yang (2012) Nature

Mg²⁺ (1 mM)

Mn²⁺ (10 mM)

Gao & Yang, (2016) Science

Nakamura, et al., & Yang (2012) Nature

Affinity of the 3rd Metal ion is the Determinant

Affinity of the 3rd Metal ion is the Determinant

The 3rd Metal ion is Required for DNA Synthesis Reaction !!!

The 3rd Metal ion is Required for DNA Synthesis Reaction !!!

The 3rd Metal ion is Required for DNA Synthesis Reaction !!!

Binding of the 3rd Metal Ion Occurs in Transition State & Requires Thermal Energy

Binding of the 3rd Metal Ion Occurs in Transition State & Requires Thermal Energy

Binding of the 3rd Metal Ion Occurs in Transition State & Requires Thermal Energy

DNA Synthesis Reaction is Likely Initiated by the 3rd Mg²⁺ and not by a General Base

Yang, Weng & Gao (2016) Cell & Bioscience

DNA Synthesis Reaction is Likely Initiated by the 3rd Mg²⁺ and not by a General Base

Yang, Weng & Gao (2016) Cell & Bioscience

A Third Metal Ion in Two-Metal-Ion Catalysis

Gao & Yang, (2016) Science Nakamura, et al., & Yang (2012) Nature

A Third Metal Ion in Two-Metal-Ion Catalysis

Gao & Yang, (2016) Science Nakamura, et al., & Yang (2012) Nature

A Third Metal Ion in Two-Metal-Ion Catalysis

Gao & Yang, (2016) Science Nakamura, et al., & Yang (2012) Nature

Shan & Hershlag., Biochem, (1999)
A New Paradigm for Enzyme Catalysis

A New Paradigm for Enzyme Catalysis

Yang, Weng & Gao (2016) Cell & Bioscience

Three Me²⁺ may be Required for Catalysis by all Polymerases

Three Me²⁺ may be Required for Catalysis by all Polymerases

Three Me²⁺ may be Required for Catalysis by all Polymerases

Acknowledgments

(KGIST)

Young Sam Lee Christian Biertuempfel (Max Planck)

Peter Weng (NIH)

Collaborators

Fumio Hanaoka Yoriko Yanagata Chikahide Masutani Alan Lehman Yuriko Yamagata Yue-jin Hua Roger Woodgate

SER-CAT, Dyda-CAT

Teruya Nakamura (Kumamoto Univ.)

Ye Zhao (Zhejiang Univ.)

Yang Gao (NIH)

NIDDK, NIH, China Scholarship Council, \$\$ HFSP, Kumamoto University