RAD21 binding at loop boundary predicts breakage frequency

\[
p = 0.56
\]

\[
*p < 1e-15
\]
Conclusions

1. Many cancer fusion breakpoint cluster regions are direct targets of TOP2.

2. Oncogenic DSBs are conserved in different cell types (B-cells).

3. DSBs are dependent of TOP2B.

4. TOP2B DSBs are independent of transcription and replication.

5. DSBs are located 45nt outside chromatin loops bound CTCF/RAD21.

6. BCRs are localized at chromatin loop boundaries.

7. Breakage frequency, TOP2 activity, is predicted by RAD21 (cohesin) binding.
Torsional stress during loop formation makes chromosome loop anchors more vulnerable to TOP2 mediated DNA breaks.

TOP2B-mediated DSBs

entanglement

missrepair

chromosomal rearrangement
Conclusions

1. Many cancer fusion breakpoint cluster regions are direct targets of TOP2.

2. Oncogenic DSBs are conserved in different cell types (B-cells).

3. DSBs are dependent of TOP2B.

4. TOP2B DSBs are independent of transcription and replication.

5. DSBs are located 45nt outside chromatin loops bound CTCF/RAD21.

6. BCRs are localized at chromatin loop boundaries.

7. Breakage frequency is predicted by RAD21 (cohesin) binding.

8. TOP2B is always active at boundaries; thus torsional stress relief is continually needed, but could be dangerous.
Acknowledgements

Kobi Maman
Nancy Wong
Elsa Callen
Amanda Day
Andre Nussenzweig
(NCI/NIH)

Peter Aplan
(NCI/NIH)

Seolkyoung Jung
Kyong-Rim Kieffer-Kwon
Aleksandra Pekowska
Rafael Casellas
(NIAMS/NIH)

Peter McKinnon
(Saint Jude Children’s Research Hospital)

Hongliang Zhang
Yves Pommier
(NCI/NIH)

Suhas SP Rao
Su-Chen Huang
Erez Lieberman Aiden
(Baylor College of Medicine)