Linking the pigmentary response to DNA repair in melanocytes

John D’Orazio, M.D.,Ph.D.

Department of Pediatrics
The Markey Cancer Center
The Graduate Center for Toxicology
Department of Molecular Pharmacology
University of Kentucky College of Medicine

23 June 2011
NIH DNA Repair
Videoconference Series

There are no relevant conflicts of interest or financial disclosures.
Skin Cancer

- >50% of all new cancers (U.S.)
- Keratinocyte malignancies
 - most common (> 1,000,000 per yr in US)
 - basal cell carcinoma (BCC)
 - squamous cell carcinoma (SCC)
- Malignant melanoma
 - most deadly
 - Account for ~¾ of the 10,000 annual US deaths from skin cancer
 - Increasing prevalence across age groups (even pediatrics)
 - Highest incidence in males > 50 yrs
 - #1 cause of cancer deaths among women ages 20-25 yrs.

American Cancer Society’s Facts and Figures
Melanoma

- Cancer of melanocytes.
- Incidence rising for several decades.
 - ~ 60,000 new cases a year
 - ~ 8,500 deaths
- Top-ten cancer, both sexes
- Essentially insensitive to chemotherapy or radiation therapy.
- New therapeutic advances

SEER data, National Cancer Institute, and data from the American Cancer Institute
Recent advances in Melanoma therapy

BRAF inhibition

- ~50% of melanomas carry an activating mutation of the *BRAF*
 - serine–threonine protein kinase in the MAP kinase cascade

- Treatment of BRAF-mutant melanoma with PLX4032 (BRAF inhibitor) resulted in tumor regression in the majority of patients
 - Overall survival 10.1 months (vs. 6.4 months)

- **BUT…** the majority of patients on early trials of these drugs develop secondary resistance and subsequent disease progression

Immune modulation

- Improved survival (by ~4 months) in patients with advanced melanomas receiving ipilimumab + gp100vaccine
 - Ipilimumab mAb that binds to CTLA-4 on cytotoxic T cells to sustain anti-cancer immunity.

- gp100 peptide vaccine + IL-2 led to better clinical responses and overall survival in metastatic melanoma patients
 - 16% vs. 6% overall clinical response
 - Progression-free survival (3.9 vs. 1.6 mo)
 - Better overall survival (17.8 vs. 11.1 mo)

Flaherty et al., NEJM, 2010
British Journal of Cancer, 2011
Hodi et al., NEJM, 2010
Schwartzentruber et al., NEJM, 2011
Melanoma Risk Factors

• Fair skin, freckling and light hair
 – *Inability to tan effectively*

• Defective Nucleotide Excision Repair
 • *Xeroderma pigmentosum (XP)*

• Moles
 – *Dysplastic nevus syndrome*

• UV radiation
 – *Blistering sunburns*

• Immune suppression

• Family or personal history

• Age

• Inherited cancer predisposition
 – *Familial melanoma (p16)*
Skin pigmentation phenotype – a major determinant of melanoma risk
Melanocyte

- Neural crest derived cell
- Exclusive pigment producing cell in the skin
- Mainly in the skin
 - Leptomeninges (medulla oblongata)
 - Eye (retina)
 - Inner ear (ionic gradient)
- Precursor cell for malignant melanoma

Primary melanocytes in culture
The Skin
“Epidermal Melanin Unit”

EPIDERMIS
- Keratinocytes
- Stratum corneum
- Stratum lucidum
- Stratum granulosum
- Stratum spinosum
- Stratum basale

DERMIS
- Melanocytes

Note: The diagram illustrates the layers and cells in the epidermis and dermis, highlighting the relationships and locations of keratinocytes and melanocytes.
Skin Pigmentation: Fitzpatrick Scale

<table>
<thead>
<tr>
<th>Skin Phototype</th>
<th>Constitutive Skin Color</th>
<th>MED (mJ/cm² UVB)</th>
<th>UVB Sensitivity</th>
<th>Tanning/Burning History</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ivory/pale white</td>
<td>15-30</td>
<td>+++</td>
<td>Burns easily and strongly, never tans</td>
</tr>
<tr>
<td>II</td>
<td>Very white</td>
<td>25-40</td>
<td>+++/++++</td>
<td>Burns easily, tans minimally with difficulty</td>
</tr>
<tr>
<td>III</td>
<td>White</td>
<td>30-50</td>
<td>+++</td>
<td>Burns moderately, tans somewhat</td>
</tr>
<tr>
<td>IV</td>
<td>Light brown, beige, olive</td>
<td>40-60</td>
<td>++</td>
<td>Burns minimally, tans moderately</td>
</tr>
<tr>
<td>V</td>
<td>Moderate brown</td>
<td>60-90</td>
<td>+</td>
<td>Rarely burns, tans well</td>
</tr>
<tr>
<td>VI</td>
<td>Dark brown/black</td>
<td>90-150</td>
<td>+/-</td>
<td>Never burns, tans profusely</td>
</tr>
</tbody>
</table>

Melanin biosynthesis

Tyrosine → DOPA → DOPAquinone → LeucoDOPAchrome → CysteinylDOPA → 1,4-benzothiazinylalanine → Eumelanin (brown/black melanin)
- very effective UV blocking pigment

Tyrosinase

Tyrosinase
Eumelanin is a Terrific Natural Sunscreen!

- Skin cancer incidence correlates with pigmentation
 - 20-30% of all neoplasms in Caucasians.
 - 2-4% of all neoplasms in persons of East Asian inheritance
 - 1-2% of all neoplasms in persons of African or Asian-Indian descent
- The dose of UVR required to produce sunburn is up to 30 times greater in people of color than in Caucasians.

<table>
<thead>
<tr>
<th>% of UV Radiation that gets through the epidermis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darkly Pigmented Skin</td>
</tr>
<tr>
<td>UV-A</td>
</tr>
<tr>
<td>UV-B</td>
</tr>
</tbody>
</table>

US Melanoma Incidence by Race, 2004-08

Incidence rate (per 10^5/yr)

- All Races
- White
- Black
- Asian/Pacific Islander
- American Indian/Alaska Native
- Hispanic

Legend:
- Men
- Women
Skin complexion is multi-genic

- **MATP**
 - Membrane-associated transport protein
 - Sugar transporter in melanosome membrane
- **MC1R**
 - Melanocortin 1 receptor, Gs-coupled protein
 - Binds MSH on surface of melanocytes
- **SLC24A5**
 - Solute carrier family 24, member 5
 - Cation exchanger in melanosomes, cysteine transport
- **ASIP**
 - Agouti signaling protein
 - MC1R antagonist
- **P**
 - Pink-eyed dilution protein
- **Tyr**
 - Tyrosinase
 - Oculocutaneous albinism type 1
- **DCT**
 - Dopachrome tautomerase
 - Oculocutaneous albinism type 4

Correlates with fair skin, red hair, freckling, inability to tan and melanoma risk in humans

- C. de Torre et al., *Melanoma Res* 20, 342 (2010).
Mechanism of Adaptive Pigmentation

Cui, et. al., Cell, 2007
MC1R defects correlate with:

- Fair-skin
- Inability to tan
- Melanoma risk

MC1R Function

- Good cAMP signaling
- Loss of function

Eumelanin → melanin found in skin ← Pheomelanin

Skin phototype (complexion); Fitzpatrick scale

VI V IV III II I

- Never Burns
- Tans easily
- Can’t tan
- UV sensitive

Melanoma Risk

MC1R mutations
- Arg151Cys
- Arg160Trp
- Asp294His

“Red Hair Color” phenotype (MC1R-defective)
ANIMAL MODEL
Defective MSH signaling causes fair skin

Dark skin

- Adenylate cyclase
- Mc1^{re}E/E
- MSH

Fair skin

- MSH
- Mc1^{re}e/e
- Muted cAMP response

Robbins, et. al., Cell, 1993
Human Skin

Melanocytes in hair follicles and basal epidermis

Mouse Skin

Melanocytes only in hair follicles
Stem Cell Factor Signaling

- SCF/c-kit pathway important to melanocyte migration and survival.

- Human basal keratinocytes express c-kit constitutively.

K14 - Stem Cell Factor Transgene

C57BL/6

Epidermal melanocytes in the SCF background

Murine model of epidermal melanocytes

C57BL/6 Tyr^{c2j/c2j} Mc1^{e/e}

C57BL/6 Tyr^{+/+} Mc1^{e/e}

C57BL/6 Tyr^{+/+} Mc1^{e/E/E}

K14-SCF⁺

Eumelanin

<table>
<thead>
<tr>
<th>Pigment Variant</th>
<th>C2J Albino</th>
<th>Extension</th>
<th>Wild Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ng/mg dry weight +/− SD</td>
<td>0</td>
<td>500</td>
<td>3000</td>
</tr>
</tbody>
</table>

Pheomelanin

<table>
<thead>
<tr>
<th>Pigment Variant</th>
<th>C2J Albino</th>
<th>Extension</th>
<th>Wild Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ng/mg dry weight +/− SD</td>
<td>0</td>
<td>300</td>
<td>150</td>
</tr>
</tbody>
</table>

D’Orazio, et. al., Nature, 2006
Adaptive melanization is $Mc1r$-dependent

Daily treatments, 5d/wk, one month total.

D’Orazio, et. al., Nature, 2006
Forskolin

- Cell-permeable diterpenoid
- Activator of adenyl cyclase
 - ↑ cytoplasmic cAMP

Coleus forskohlii plant, (Plectranthus barbatus)

http://medicine.osu.edu/news/images/high_quality/Coleus_forskohlii_p1.jpg
Forskolin but not UV rescues eumelanin production in mice with defective MSH signaling.

D’Orazio, et. al., Nature, 2006
Skin Color (L*) +/- SD

Week of study

Topical treatments started
Topical treatments stopped

Forskolin-induced melanin protects against UV damage

Protection against carcinogenesis

A.

B.

<table>
<thead>
<tr>
<th>Tumorigenesis in UV-treated animals</th>
<th>$Mc1^{re/e}$ vehicle</th>
<th>$Mc1^{re/e}$ forskolin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous cell carcinoma</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Other tumors</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Multiple tumors</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total tumors</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

*9 mice in each group

D’Orazio, et. al., Nature, 2006
Conclusions

- The melanocortin 1 receptor cAMP pathway mediates production of eumelanin by melanocytes.
 - Mc1r defects lead to a fair-skinned, UV-sensitive phenotype.

- Eumelanin production is rescued in an animal model of the fair-skinned human by forskolin.
 - Pigmentary machinery remains intact in Mc1r-deficient state

- Forskolin-induced epidermal eumelanin is highly protective against acute and chronic UV-mediated injury.
 - Novel UV-protective strategy
Mc1r and Melanoma

• Mc1r-defective individuals are at high risk of melanoma.
 – tend to be fair-skinned and UV-sensitive.
 – Having less eumelanin in the skin certainly promotes UV penetration into the basal layer of the epidermis.

• Rate of UV-induced mutagenesis can be affected by rate of production \textit{and} rate of clearance.

• \textit{Could Mc1r signaling also affect melanocyte DNA repair mechanisms?}
Adaptive Pigmentation and DNA Repair in the Skin

UV

Keratinocytes

p53 activation

POMC transcription

Mc1r

Adenylate Cyclase

ATP

cAMP

CREB

PKA

Eumelanin synthesis

DNA repair

Mitf

Pigment Enzymes

β-endorphin

Eumelanin transfer to keratinocytes

α-MSH

ACTH

Cui, et. al., Cell, 2007
Melanoma incidence is on the rise.

- Novel UV- and cancer-protective strategy.
 - safe, healthy tanning
 - better recovery from UV damage!
cAMP modulators in practice

• Methylxanthines
 – Phosphodiesterase inhibition
 – Theophylline
 • Asthma; relaxes smooth muscles in bronchioles
 – Caffeine
 • Stimulant; sed for apnea of prematurity
 – Theobromine
 • Caffeine-like agent in chocolate

• Other phosphodiesterase inhibitors
 – Amrinone, Milrinone
 • Heart failure; positive inotropic effect on heart, vasodilator
 – Rolipram
 • Psychiatric uses; anti-depressant, memory aid, increased wakefulness

Khaled, et. al., 2010, Genes & Development
Thank you!

jdorazio@uky.edu; 859-323-6238
Contributors, Collaborators & Acknowledgements

Funding Sources
NIH (NCI)
Univ. KY, Markey Cancer Ctr
American Cancer Society
Wendy Will Case Foundation
Jennifer and David Dickens Melanoma Foundation

Dana-Farber Cancer Inst.
David Fisher
Emi Nishimura
Tetsu Nobuhisa
Rutao Cui
Vivien Igras
Ian Davis

Fujita Univ. Sch. Health Sci.
Kazu Wakamatsu
Shosuke Ito

Takahiro Kunisada

University of Kentucky
Markey Cancer Ctr.
Dep’t Pediatrics
Grad. Ctr. Toxicology
Dep’t Mol Pharmacology

Mark Evers
Jeff Moscow
Mary Vore
Daret St. Clair
Mark Lovell
Brett Spear