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Polymerase Mutator Alleles — The Toolset

Strand-Specific Error Signature
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Division of Labor at the Eukaryotic Replication Fork
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DNA mismatch repair

Replication error

MMR complex assembly
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Strand discrimination
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MMR more efficiently repairs errors

introduced by pol & than pol O

Nick McElhinny et. al. PNAS 2010
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Working hypothesis

Is Exol involved in the higher

MMR efficiency observed for
pol & errors?




_\

National Institute of

V Environmental Health Sciences

Mutation rates in exo | A strains
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Mutation rates in exo | A strains

Mutation rate URA3
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Mutation rates in exo | A strains

Mutation rate URA3
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Mutations in exo | A strains are base

substrtutions and single base deletions

Indicative of MMR loss
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Mutation Specificity in pol[-L868M exo | A and pol3-L6 | ZM exo | A strains
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Mutation Specificity in pol[-L868M exo | A and pol3-L6 | ZM exo | A strains

polI-L86EM

GtoA, 764
GtoA, 608 | | |
GtoA, 437 | [ |
GtoA, 268
GtoA, 167 | ||
GtoA,/155 [ T
GtoA, 98
0.001 0.01 0.1 1 10 100 1000
pol3-L6 | 2M
GtoA, 764 | | — ]
GtoA, 608 I —— |
GtoA, 542 | | —— |
GtoA 541 X T
GtoA, 437 | | ]
TtoC,97 [ | —— |
0.001 0.01 0.1 1 10 100 1000

[ ] wild type
. exolA
. msh2A

Correction factor:
exold
EXOI*

Wild type and Msh2 data are from:
Nick McElhinny et. al. PNAS 2010



<% NIEHS
" National Institute of

Environmental Health Sciences

Mutation Specificity in pol[-L868M exo | A and pol3-L6 | ZM exo | A strains
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Mutation Specificity in pol[-L868M exo | A and pol3-L6 | ZM exo | A strains
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Exol dependent mismatch repair of transitions

pol [-L86EM pol3-L6 | 2M M Exol dependent MMR
4% 4% Msh2 dependent MMR

96% 96%

In the absence of Exo| most replication errors can still be
corrected through Msh2-dependent mechanisms

Msh2 data are from:
Nick McElhinny et. al. PNAS 2010
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MMR deficient strains (msh2A4) are
characterized by very high single

base deletion rates at four specific
mononucleotide runs in URA3
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Four mononucleotide runs in URA3 are highly dependent on MMR
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Nick McElhinny et. al. PNAS 2010
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Four mononucleotide runs in URA3 are highly dependent on MMR —

But not on Exol
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Dissection of Exol’s functions in MMR sub-pathways
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Hypothesis:

Exol is not significantly involved in repair of replication errors
through the Msh2-Msh3 sub-pathway of MMR
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Dissection of Exol’s functions in MMR sub-pathways
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Mutation Specificity in exol A and msh3A strains

MMR of =T ina run of Ts in pol3-L612M

Strain Rate (x107)
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msh2 A B
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msh3 A 0.05

msh3 A mshé A |9 (synergy)
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Mutation Specificity in exol A and msh3A strains

MMR of =T ina run of Ts in pol3-L612M
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Mutation Specificity in exol A and msh3A strains

MMR of =T ina run of Ts in pol3-L612M

Strain Rate (x107)
MISl=R2 0.006

msh2 A B

mshé A 0.54

msh3 A 0.05

msh3 A mshé A |9 (synergy)
exol A 0.10

exol Amsh3 A |.2 (synergy)

Exol preferentially participates in the Msh2¢6-dependent MMR pathway
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Exol in MMR

Exol differentially repairs Pol & errors more efficiently
than pol ® errors

- Exol dependent MMR plays a greater role in repairing
lagging strand errors compared to leading strand errors
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Exol is involved in the Msh2-Mshé sub-pathway of MMR

In the absence of Exo| most replication errors can still
be corrected in an Msh2- dependent manner
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First High-Resolution Genome-Wide Map
of p53 Binding Sites in Normal Human Cells
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nature
REVIEWS

7% The rise of p53
Bert Vogelstein and Carol Prives

2009 Nature Reviews Cancer 9

7 Inactivation of p53 is essential for the formation of nearly
all cancers.

2 The volume of work on p53 has shown it to be at the
centre of a cellular network of feedback and feedforward
loops, forming a paradigm for system biology.

2 Understanding of this network, and determining how it
can be exploited for therapeutic benefit, will keep scientists
busy for years to come.
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2 Upon DNA damage p53 binds to the DNA
genome and regulates transcription of Damage
extensive network of genes, promoting
cell cycle arrest, DNA repair, senescence
or apoptosis.

? Unresolved remains the question how
p53 discriminates between the thousands
of potential p53 binding sites predicted in
the human genome.

2 Individually analyzed functional binding
sites are close to the target genes/TSS.

72 Three major genome-wide studies were
published in human cancer-derived cells.

Chip-PET, HCT116, Wei et al, Cell 2006
ChlP-chip, U20S, Smeenk et al. NAR 2008
ChlIP-seq, U20S, Smeenk et al. PLOS 2011 T101
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Where in the genome binds p53 in normal
not transformed human cells?

Are these locations similar or different from
those reported previously in cancer-derived
cell lines?

What is the genomic landscape of the p53
binding sites?
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\,\ Defining high-confidence p53 binding
sites in normal human fibroblasts IMR90
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p53 ChIP-seq and Input-seq map at chr6
and the canonical p53 target CDKN1A
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Out of 168 known functional (reference) p53 binding
sites, 62 were successfully identified in IMR90
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For 79% of the identified reference sites, the distance between the peak maximum
and the reference site center was less than 50 nt, and for 52% - less than 20 nt.
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p53 ChIP-seq peaks are strongly enriched
for predicted p53 binding sites and for TSS
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Only in the normal IMR90 cells p53 ChIP-seq peaks
are strongly enriched at TSS and CpG islands (CGIs)
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In IMR90 cells p53 ChIP-seq peaks are
enriched for CpGs and at hypomethylated DNA

p53 ChIP-seq peaks are enriched p53 ChIP-seq peaks are
for CpG dinucleotides hypomethylated
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* IMR90 methylation data from
Lister et al. Nature, 2009.
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p53 ChIP-seq peaks in CGIs and out of CGIs
have different hypomethylation profile
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In IMR90 cells p53 ChIP-seq peaks are

enriched at proximal CpG islands
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Distribution of all human CGIs with respect to TSS. Plotted in red are
CGIs at which high-confidence p53 ChIP-seq peaks are found.
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In IMR90 cells p53 ChIP-seq peaks
are enriched at hypomethylated DNA
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The hypomethylation level of ChIP-seq peaks in
proximal CGIs matches that of all human proximal CGIs.
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In IMR90 cells p53 ChIP-seq peaks

are enriched at hypomethylated DNA
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IMR90 methylation data from

" 30 CGls with ChIP peaks

Lister et al. Nature, 2009.
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p53 ChIP-seq peaks in distal CGIs are more
hypomethylated than the human distal CGIs.
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Motif analysis of the high-confidence
ChIP-seq peaks identified in IMR9O0 cells
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Sequence logo depicting the p53CSI motif p53 motif enrichment
(ChIP-seq identified in IMR90), E-value 1.2e-1059.  at the ChIP-seq peaks
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Summary
p53 binding sites in the cancer p53 binding sites in the
cells HCT116 and U20S normal cells IMR90

CHIP CHIP
m Input

=1 | P>

- ChIP-PET | -
ChIP-
ChiP-chip * e

72 Less than 5% within 2kb of TSS 2 More than 40% within 2kb of TSS

? Depleted from CGIs 7 Strongly enriched at CGIs
72 Enriched at repeats ? Less enriched at repeats
7 Methylation status ? 7 Hypomethylated
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Summary

2 We provide high-resolution genome-wide map of p53 binding
sites in normal (not transformed) human cells.

7 These sites have distinct genomic distribution compared to
those previously reported in cancer-derived human cells.

7 That distribution does not reflect p53 affinity to specific
sequences.

72 A small fraction of binding sites is present in all four p53
datasets analyzed; only in the normal cells p53 is highly
enriched within 2kb +/- TSS, distribution characteristic for the
individually analyzed functional p53 binding sites.

7 In the normal human cells p53 is highly enriched at CpG
islands and hypomethylated DNA.
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Open Questions

2 How important for the p53 genome-wide binding is
the epigenetic landscape of the human genome?

2 How global hypomethylation and local CpG islands
hypermethylation accompanying cancer development
affect p53 genome-wide binding and target selectivity?

? How Low Dose Radiation and the epigenetic changes
caused by it affect p53 binding and DNA damage
response in the human cells?
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NEXT ?

Genome-wide studies on different
types of cells (normal and cancer)
combined with DNA methylation
and histone modification maps,
can help place p53 binding

in the context of chromatin in vivo,
to address the epigenetic impact
on the p53 dependent transcription
regulation and to provide a global
view of the p53 network changes
during cancer progression.

Botcheva et al. Cell Cycle 2011
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Circadian Rhythm & Circadian Clock

circa, "around," dies, “a day" e Circadian Rhythm
! e Circadian Clock
* Synchronized with the
solar clock by light

Circadian clock disruption
* Sleep Disorder
* JetlLag

Clock related diseases
e Cancer
e Heart attack

www.learner.org/jnrth/images * Type 2 diabetes



Loss of Rhythmic Behavior in Clock-deficient Mice

— Actogram: Wheel running activity 1
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Role of the Excision Repair in preventing
UV-induced Skin Carcinogenesis
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Circadian Oscillation of NER Activity and XPA Levels
in Mouse Liver and Brain
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Potential importance of Rhythmic Expression of NER
Activity in Skin Cancer Incidence?
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Circadian Oscillation of XPA in Mouse Skin
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Circadian Rhythmicity of Excision Repair Rate
in Mouse Epidermis
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Circadian Rhythmicity of DNA Replication in Mouse
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Does Skin Cancer Incidence Depend on Time of Day?
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Skin Carcinogenesis Protocol

* Irradiate Mice with UVB 3 times a week for 25 weeks:

AM Group —4 AM (ZT 21),
PM Group —4 PM (ZT 09)
Control Group- No Treatment

* Examine skin daily for 25 weeks

* Analyze skin lesions histopathologically
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Effect of Time of Day on UV- Skin Carcinogenesis
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Effect of Time of Day on UV- Skin Carcinogenesis

(Histopathological Examination) in Mouse
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Conclusion: Model for the Role of Circadian

Clock in UV-induced Skin Carcinogenesis
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Questions?
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Time of UV exposure mig

Exposure to UV radiation triggers DNA
lesions that can lead to skin cancer, the
most common type of cancer in the Unit-
ed States. Previous studies in mice have
shown that levels of a protein called XPA,
involved in repairing UV-induced DNA
lesions, waxes and wanes with the time of
day, peaking between 4-6 PM and dipping
between 4-6 AM in tune with the circa-
dian clock. Shobhan Gaddameedhi et al.
(pp. 18790-18795) found that the protein’s
level and activity in mouse skin cells are
at their lowest at 4 AM and their highest
at 4 PM. The authors exposed two groups
of mice to UV radiation—one at 4 AM
and the other at 4 PM—and monitored
the onset of skin cancer. Mice irradiated
when the repair activity was at its lowest
developed tumors much faster and at five-
fold higher frequency compared with mice
exposed to UV when the protein’s repair
function was at full throttle. When the au-
thors repeated the experiment in a strain
of mice lacking two key components of the
circadian clock, the time of UV exposure
tracked neither the protein’s repair activ-
ity nor the onset of skin cancer, suggesting
that circadian control of the XPA protein
might influence skin cancer rates. Because mouse and human circadian clocks are similar, the time of UV exposure
might likewise determine its cancer-causing potential in people, according to the authors. — PN.

Circadian control of skin cancer.

Gaddameedhi S et al (2011) PNAS 108:18790-18795
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