(unpublished data removed 2016-05-22)

Ancient history from the last millenium γ-H2AX characterization KO mouse Senescence Bystander effect Dosimetry Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition

Ancient history from the last millenium

γ-H2AX characterization
KO mouse
Senescence
Bystander effect
Dosimetry
Pre-clinical studies
Characterization of NCI60 panel
H2AX and the Epithelial Mesenchymal Transition

Histone 2A, a Heteromorphous Family of Eight Protein Species[†]

Michael H. P. West and William M. Bonner*

Biochemistry 1980, 19, 3238-3245

Patterns of Histone Variant Synthesis Can Distinguish G0 from G1 Cells

Roy S. Wu,* Shien Tsai[†] and William M. Bonner* * Laboratory of Molecular Pharmacology

In S phase (top): All variants are being synthesized. In G1 (middle): H3.1 and H3.2 are turned off. In G0 H2A.1 and H2A.2 are also turned off.

H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3' processing signals

Cecilia Mannironi, William M.Bonner* and Christopher L.Hatch

Nucleic Acids Research

H2A.X-type																									
Human HZA.X	K	K	T	S	Α	Т	۷	6	Ρ	Κ	Α	Ρ	S	6	G	Κ	Κ	Α	Т	0	A	S	0	Ε	Y*
Sac. cere H2A.1	K	K	-	S	Α	-	-	-	-	-	-	-	-	-	-	-	K	A	Ī	K	Â	Ş	Q	Ē	Ē*
Sac. cere H2A.2	K	Κ	-	S	Α	-	-	-	-	-	-	-	-	-	-	-	K	T	Ā	κ	Ā	Ş	Q	Ē	L*
Aspergillus H2A	K	Κ	T	Ρ	-	-	-	-	-	-	-	-	-	-	-	-	Ē	A	G	κ	Ğ	Ş	Q	Ē	L*
Tetrahymena H2A.1	K	Κ	T	Ε	-	-	-	-	-	-	-	-	-	-	S	R	-	-	G	Q	A_	S	Q	D	I*
Schiz. pombe H2A.1	Т	Κ	T	S	-	-	-	-	-	-	-	-	-	-	G	R	-	Т	6	ĸ	Ρ	Ş	Q	Ε	L*
Schiz. pombe H2A.2	T	Κ	Q	S	-	-	-	-	-	-	-	-	-	-	G	Κ	-	-	G	κ	Ρ	\$	0	Ē	L*

H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3' processing signals

1 ACAGCAGTTACACTGCGGCGGGCGTCTGTTCTAGTGTTTGAGCCGTCGTGCTTCACCGGTCTACCTCGCTAGC

74	ATETCESSCCGCGGCGAAGACTGGCGGCAAGGCCCGCGCCCAAGGCCAAGTCGCGCCGCGCCGGCCTC
(x)	METSerGlyArgGlyLysThrGlyGlyLysAlaArgAlaLysAlaLysSerArgSerSerArgAlaGlyLeu
111	1 5 61n 10 15 Thr 20
ì46	CASTTCCCASTGGGCCGTGTACACCGGCTGCTGCGGAAGGGCCACTACGCCGAGCGCGTTGGCGCCGGCGCG
(x)	GinPheProValGiyArgValHisArgLeuLeuArgLysGiyHisTyrAlaGiuArgValGiyAlaGiyAla
751	30 Ala 39 Ser 45
žiá	CARTETACCTEGCGGCAGTGCTGAGTACCTCACCGCTGAGATCCTGGAGCTGGCGGGCAATGCGGCCCGC
(x)	ProValTvrieuAlaAlaValleuGluTvrieuTbrAlaGluIleLeuGluLeuAlaGlyAsnAlaAlaAro
2641	50 60 70
λή	GAC ANC ANG ANG ANG ANG CALCULATION CONTROL AND THE ANGLIGAC GALGACGAGGAGC TO AN CALCULATION OF THE ANGLIGAC ANGLIGAC GALGAGGAGC TO AN CALCULATION OF THE ANGLIGAC GALGAGGAGGAGC TO AN CALCULATION OF THE ANGLIGAC GALGAGGAGC TO AN CALCULATION OF THE ANGLIGAC GALGAGGAGC TO AN CALCULATION OF THE ANGLIGAC GALGAGGAGGAGC TO AN CALCULATION OF THE ANGLIGAC GALGAGGAGGAGC TO AN CALCULATION OF THE ANGLIGAC GALGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
in	AsnAsnivsivsThrArn11e11eProArnHisteuGloLeuAlalleArnAsnAsnGluGluLeuAsnivs
264	80 90
167	CTGCTGGCGGCGTGACGATGACGCGCGCGCGTGCCGGCGGCGGCGGCGGCGGCGGCGGCGG
in	aut auf w61v61vValTarl1e41a61a61v61vValt auProAsol1e61oA1aValt aut auPro1vs1vs
234	98 Am 110
14	ACCAGE OF A CONTRACT OF A ACCOUNT OF A ACCAGE OF ACCAGE OF A ACCAGE OF ACCAGE OF ACCAGE OF A ACCAGE OF ACCAGE ACCAGE OF ACCAGE ACCAGE ACCAGE ACCAGE ACCAGE ACCAGE OF ACCAGE ACCAGE OF ACCAGE OF ACCAGE OF ACCAGE OF ACCAGE ACCAGE OF ACCAGE OF ACCAGE ACCAGE OF ACCAGE OF ACCAGE ACCAGE OF ACCAGE ACCAGE ACCAGE ACCAGE ACCAGE ACCAGE OF ACCAGE ACCAGE OF ACCAGE ACCAGE OF ACCAGE
(*)	The Ser & a The Yal & Yer of year a Pro Ser & Yel y year of year a The Ser & In & I
-264	120G1(SarHithiti viA) al vc[1v] vt]30 140 142
ŚŚ	CARGECTUS/ SCIENCES/ CESTIGUTI TAGETCUCCATE CACAAASSCICUTTTAASSSCIACU/ CCS
57R	I CETTE A TORA A A RACE TANK CERETTE A GALETIC SERVER AND SERVER SERVER SERVER TO CONTROL OF THE LEVEL
5/0	
650	CTORECOMPTITURE OF A COMPTITURE OF
722	SALCTOSSECCISCCCISTCCSCCCTCCSCCCTCCSGCCTTCCSGCCTTCCSGCGCTCCSGCGCT
794	CTTCESSEACCTCCETSSCSCASSAAGACCCGASCCTGCC66666GASGCC66C6C6CACCT6CCC6CC
855	TCGGCGTTCGTGACTCAGCCGCCCATCCCGAGTCGCTAASGGGCTGCGGGGGGGGGG
938	ASACTTEGCCTTCCGCTCTGACGCAGGGCCGAGGTGGGCAGTCCAGGCCGAGAGCCGGGCCCTGAAGGTG
1010	ASTGAGGCCCTCGGCAGCTGCAGCCGGGGTGTCTGGTACCCCCCGGCGTGGTGCTTAGCCCAGGACTTTCA
1082	GACGGCCGCTGGCCGGGASGCTTTGGTGGGAGAGAGAGCGCGATCGCCGATTTCGGTCTGGCGCCCCTTCTGCGG
1154	CC656ACCCA66CCTTTCACATCA6CTCTCCCTCCATCTTCATTA6GTCT6C6CT6666CC666AC6AA
1226	GCACTTGGTAACAGGCACATCTTCCTCCCCAAGTGACTGCCTCCTAGGAGGACATTTAGGGGAGGGCAGAGGC
1298	CT6CASTTT66CTTCAC66CT66CTAT6T66ACA6CAA6ASTC6TTTT6C66AAC6C6ACT66CA6CCA66C
1370	CTGTCGGGCCCCCGACGCCGCCCCATTCCCCTTCCAGCAAACTCGACTCGGCAATCCAAGCACCTAGATACC
1442	AGCACAAGTCGGTTAATCCCTGTCTGGACTGAGCCTCCGTTGGCTTCTGAACTGGAATTCTGCAGCTAACCC
1514	TTCCACGACTAGAACCITAGGCATTGGGGAGTTTTAGATGGACTAATT TATTAAAGGATTGTTTTTTTT
	(1585 total bases) 3 3

Ancient history from the last millenium y-H2AX characterization

KO mouse Senescence Bystander effect Dosimetry Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition

DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139*

(Received for publication, July 25, 1997)

Emmy P. Rogakou, Duane R. Pilch, Ann H. Orr, Vessela S. Ivanova, and William M. Bonner‡

From the Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892

TABLE II	
Constant percentages, not numbers, of H2AX molecules are γ -m	modified per Gy

The stained H2A2, H2A1, and H2AX species on two-dimensional gels were recorded as TIFF images and quantitated with ImageQuant software version 3.3. The γ -H2AX/H2AX ratio was determined 30 min after exposing the cell cultures to 25 Gy. The following conversion factors and assumptions were used. 1) The mammalian G₁ genome contains 6×10^9 bp of DNA, hence about 30×10^6 nucleosomes (200 bp/nucleosome) and 60×10^6 H2A molecules (2 molecules/nucleosome). 2) 25 Gy induces about 875 DNA double-stranded breaks per G₁ genome. 3) H2AX is randomly distributed in the chromatin.

Cell type	H2AX/total H2A	γ-H2AX/total H2AX	No. of H2AX/cell	No. of γ -H2AX/cell	No. of y-H2AX/dsb	γ-H2AX/dsb	bp of DNA/dsb	
	%	%				%		
VA13	2.6	28	$1.6 imes10^6$	$0.45 imes10^6$	530	0.033	2.0×10^{6}	
HeLa	2.4	30	$1.4 imes 10^6$	$0.45 imes10^6$	490	0.035	$2.1 imes 10^6$	
IMR90	9.8	30	$5.9 imes10^6$	$1.7 imes 10^6$	2100	0.035	$2.1 imes 10^6$	
CHO	9.4	34	$5.6 imes10^6$	$1.9 imes10^{6}$	2240	0.040	$2.4 imes10^6$	
SF268	25	50	$15 imes 10^6$	$7.5 imes10^{6}$	8800	0.059	$3.5 imes10^6$	

Megabase Chromatin Domains Involved in DNA Double-Strand Breaks In Vivo

Emmy P. Rogakou, Chye Boon, Christophe Redon, and William M. Bonner

Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892

The Journal of Cell Biology, Volume 146, Number 5, September 6, 1999 905-915

Muntjac Chromosomes. Foci are apparent by 1 min post IR.

Clinical: Human blood (NIH blood bank) irradiated in vitro

Ancient history from the last millenium γ-H2AX characterization KO mouse Senescence Bystander effect Dosimetry Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition Science. 2002 May 3;296(5569):922-7. Genomic instability in mice lacking histone H2AX. Celeste A(1), Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A.

H2AX-/immortalized MEFs exhibit poor survival and slower dsb repair.

Time (min)

Deaths in p53-null H2AX haploids primarily due to thymic lymphomas

Ancient history from the last millenium γ-H2AX characterization KO mouse Senescence Bystander effect Dosimetry Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Sedelnikova OA1, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. Nat Cell Biol. 2004 Feb;6(2):168-70.

As NHFs and mouse tissues age, the percentage of foci-free cells decreases and the average foci per cell values increase.

In senescent P32 NHF cultures, proteins are resruited more slowly to foci. Yellow arrows, gamma-foci overlapping Rad50. White arrows, gamma-foci lacking Rad50.

P32 NHF control y-H2AX Merge 53bp1 y-H2AX Merge Rad50

P32 NHF 1 Gy 30 min

Are the "unrepairable" γ-foci at defective telomeres? Humans: Yes, about 2/3 rds. Wt Mice: No

TEL KO Mice: 4th gen: Yes, about 2/3rds

Ancient history from the last millenium γ-H2AX characterization KO mouse Senescence

Bystander effect

Dosimetry Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition

Tumors induce complex DNA damage in distant proliferative tissues in vivo

Christophe E. Redon^{*}, Jennifer S. Dickey^{*}, Asako J. Nakamura^{*}, Irina G. Kareva^{*}, Dieter Naf^{6,1}, Somaira Nowsheen^c, Thomas B. Kryston^c, William M. Bonner^{*}, Alexandros G. Georgakilas^c, and Olga A. Sedelnikova^{*,2}

Ancient history from the last millenium

γ-H2AX characterization

KO mouse

Senescence

Bystander effect

Dosimetry

Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition Figure 2. Kinetics for γ-H2AX foci loss in macaque lymphocytes after total body irradiation.

Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, et al. (2010) The Use of Gamma-H2AX as a Biodosimeter for Total-Body Radiation Exposure in Non-Human Primates. PLoS ONE 5(11): e15544. doi:10.1371/journal.pone.0015544 <u>http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0015544</u>

Kinetics for γ-H2AX foci in macaque plucked hairs after total-body irradiation.

Ancient history from the last millenium γ-H2AX characterization KO mouse Senescence

Bystander effect

Dosimetry

Pre-clinical studies

Characterization of NCI60 panel H2AX and the Epithelial Mesenchymal Transition

Lymphocytes – Drug combination

Plucked hairs - DNA alkylating agent Post-treatment-4hr

Ancient history from the last millenium y-H2AX characterization KO mouse Senescence Bystander effect Dosimetry Pre-clinical studies Characterization of NCI60 panel H2AX and the Epithelial Mesonebymal Trans

H2AX and the Epithelial Mesenchymal Transition

The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, Parekh PR, Sethi TK, Kasoji M, Abrams N, Merchant A, Rajapakse VN, Bonner WM. Nat Commun. 2016 Feb 15;7:10711. doi: 10.1038/ncomms10711.

Collaborators

There have been a great many collaborators over the years. Here are the four that are here today.

In my group (present here today) Emmy Rogakou: present at the discovery of gamma-H2AX and IR. University of Athens, Greece

Asako Nakamura: worked on foci structure. Ibaraki University, Japan

Olga Sedelnikova: Developed senescence and bystander studies. Peter Mac

Outside Collaborators (present here today) Olga Kovalchik, Lethbridge University, Canada