Microirradiation for single strand break repair

Natalie R. Gassman

Mitchell Cancer Institute

University of South Alabama, Mobile, AL

4/18/17

Creating sites of DNA damage

PARP1 +/+ +H₂O₂

El-Khamisy et al. Nucl. Acids Res. 2003

Localized sites of DNA damage

Agagoshi et al. DNA Repair 2010

Laser microirradiation

What can a microirradiation experiment reveal?

- Determine if a protein responds to induced damage site (screening for novel interactants or critical protein domains)
- 2. Peak recruitment time of proteins to site of induced damage
- 3. Residence time of the protein at the site of damage
- 4. Co-localization of proteins at site of DNA damage
- 5. Time courses for repair

Information you get out is only as good as the rigor used to characterize the system.

- 1. Types of damage induced
- 2. Cellular background used
- 3. Fluorescent proteins vs. endogenous proteins

Designing your microirradiation experiment

Favorite DNA repair protein

- 1. Induce a specific type of DNA damage
 - A. Power
 - B. Time
- 2. Monitor the response of repair proteins to that site of damage
 - A. Live cell
 - B. Immunofluorescence

UV and near UV Wavelengths

405 nm irradiation (Hanssen-Bauer EMM 2011)

365 nm irradiation (Lan PNAS 2004)

3-OHdG 2 min

30 min

Inducing a specific mixture of breaks

- Laser power- ideally the amount of energy that passes through the objective into the sample
- 2. Time- the duration the laser spends on the defined ROI (pixel dwell time, frame rate, iterations)

Wavelength	Power Reported	Damage Characterization	
337 nm	~0.08 µJ	8-oxodG, 6,4PPs, CPDs	
		γH2AX positive	
364 nm	~ 0.17 μJ	γH2AX negative	
365 nm	~ 0.19 µJ	γH2AX negative	
(low power)			
365 nm (high	$\sim 0.49 \mu J$	γH2AX positive	
power)		8-oxodG	
405 nm	∼7.5 µW	Low power, γH2AX negative	
	~16-800 μW	8-oxodG and yH2AX positive	

BER or SSBR

Timeline of Repair Events

Characterization considerations

Lan PNAS 2004

Tale of two wavelengths, 355 and 405 nm

355 nm 405 nm

- 1. Induce single strand breaks or base lesions without a sensitizer
- 2. Monitor the response of repair proteins to that site of damage
 - A. Live cell
 - B. Immunofluorescence

Laser microirradiation

Recruitment of XRCC1

Complex break mixture at high powers

Comparing XRCC1 recruitment

Better separation in between SSB and DSB with 355 nm

Uniformity of DSB

Nate Holton

SSBR in U2OS XRCC1-GFP

SSBR in U2OS XRCC1-GFP

SSBR in U2OS endogenous

SSBR in U2OS endogenous

355 nm 2 sec

SSBR in U2OS endogenous XRCC1

U2OS XRCC1-GFP

Intensity =
$$\frac{\text{Focus}}{\text{Nucleus}}$$

Normalized to undamaged cells

355 nm 750 ms U2OS

Endogenous XRCC1 750 ms U2OS

Endogenous XRCC1 750 ms U2OS

SSBR in A549 XRCC1-GFP

SSBR in A549 endogenous XRCC1

SSBR in A549 endogenous XRCC1

355 nm 750 msec

Microenvironment influence response

		Cell Line	XRCC1 response	γΗ2ΑΧ	53BP-1
		CHO-K1 (GFP-XRCC1)	Peaks ~ 1 sec Resolves ~ 8 min	10 min (weak) 40 min	20 min 40 min
		U2OS (GFP-XRCC1)	Peaks ~ 1 sec Resolves ~12 min	5 min	
2 s		U2OS	Resolves ~20 min	5 min	10 min
		A549 (GFP-XRCC1)	Peak~ 1 sec Resolves > 20 min	5 min	
		A549	Resolves ~ 20 min	20-40 min	20 min
		CHO-K1 (GFP-XRCC1)	Resolves within 5 min	40 min (weak)	Not detected
750 ms	$\left \cdot \right $	U2OS	Resolves ~ 15 min	Low levels from 5 min forward	10 min
	L	A549	Resolves ~ 10 min	Not detected	Very low levels > 10 min

DNA damage signaling may impact recruitment and response

☐ No

ATM-DNAPK-PARP signaling can alter the recruitment of repair factors and markers, like 53BP-1

Summary

- Use laser induced DNA damage to monitor recruitment of BER/SSBR proteins
- Inconsistencies in recruitment, timing, and other interactions may be due to differences in strand break mixtures
- Significant unknowns in how the microenvironment (cell line difference, signaling alterations, germline or somatic mutations) impacts the induction of damage and the resulting repair response
- Best practices for damage induction
 - Multiple markers for repair process of interest and strand breaks
 - Sample damage across a broad window
 - Iterate across multiple cell lines, preferably repair-proficient or wildtype and cancer or repair-deficient cell line
 - Attempt to separate signaling events as much as possible
 - Increase the n of the experiment, whenever possible

Acknowledgements

Gassman lab

Nate Holton

Cellular and Biomolecular Imaging Facility

Joel Andrews

USA-MCI

NIEHS

Sam Wilson

Jeff Tucker