Histone ubiquitination in DNA damage response

Xiaochun Yu
University of Michigan
Protein ubiquitination

E1 → **Ub** → **E2** → **Ub** → **E3** → **substrate**

degradation by proteasome

Signaling??
Protein ubiquitination participates in the DNA damage response

Ubiquitin γH2AX DAPI

- - -

IR - -
Histone H2A is ubiquitinated at the DNA damage sites

DNA damage sites
RNF8 participates in the DNA damage response.

The diagram shows a schematic representation of RNF8, highlighting the FHA and Ring domains. The pThr binding domain interacts with the E3 ligase and subsequently binds to a substrate. The process involves the attachment of Ub (ubiquitin) molecules, leading to a marked response under 2 Gy irradiation compared to 0 Gy.
FHA domain targets RNF8 to the DNA damage sites
RNF8 acts downstream of H2AX and MDC1

Many other factors including RNF8

FHA
RNF8 controls Ub-H2A foci

Ub-H2A γH2AX DAPI

RNF8 +/+

RNF8 -/-
RNF8-dependent DNA damage response

ATM → H2AX

H2AX → MDC1

MDC1 → H2A, H2B

H2A, H2B → Ub

Ub → RNF8 complex

RNF8 complex → BRCA1

BRCA1 → 53BP1

RNF168 → RNF8

Ub → Ubc13

?
Phenotypes of RNF8 deficient mice

In vivo:

1. Few RNF8-null mice develop tumors.
2. The male RNF8-null mice are sterile.

Why??
Chfr is a potential paralog of RNF8, and is often downregulated in cancers.

RT-PCR

Primary colon cancers

N = Normal tissue T = Tumor tissue

N= Normal tissue T= Tumor tissue
RNF8 and Chfr DKO mice develop T-cell lymphoma
SKY analysis of T-cell lymphoma in DKO mice

Similar to ATM -/- tumors

Chromosome 6, 14 rearrangement

Similar to ATM -/- tumors
Loss of RNF8 and Chfr abolishes ATM-dependent DNA damage response
RNF8 controls histone removal during spermiogenesis

WT

KO

Spermiogenesis:

Round spermtid

Elongating spermtid

Condensing spermtid

Sperm

Transition Protein 1 and 2

Protamin 1 and 2 deposition

Elongating spermtid

Histone removal

Condensing spermtid
H4 acetylation controls chromatin relaxation

H4 ac (H4 K16 ac)
Histone ac and Ub are abolished in RNF8-deficient spermtids

Histone H4 acetylation is the marker of elongating spermtids.
RNF8 and Chfr regulate chromatin relaxation.
RNF8 and Chfr regulate chromatin-association of MOF and Tip60
MRG15 associates with Ub-H2B

MRG15: Common component of both MOF and Tip60 complexes
ATM-dependent DNA damage response is impaired in MRG15-depleted cells
TSA rescues ATM-dependent DNA damage response in DKO MEFs

Trichostatin A (TSA):
Class I and II histone deacetylase (HDAC) inhibitor

<table>
<thead>
<tr>
<th></th>
<th>Wild type</th>
<th></th>
<th>DKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>TSA</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

TSA

↑ H4 ac

ATM activation
TSA restores 53BP foci in DKO cells
MRG15 → MOF → Tip60 → DNA damage → ATM activation → Checkpoint activation → DNA damage repair

Recruit more RNF8
Global histone eviction

spermiogenesis

RNF8, Chfr

Ub-H2A/H2B

H4 ac

Histone like proteins

local histone eviction

DNA damage response

DNA damage repair proteins

Global histone eviction

spermiogenesis

RNF8, Chfr

Ub-H2A/H2B

H4 ac

Histone like proteins

DNA damage repair proteins
Acknowledgement

Lab member:

Charles Lu
Jiaxue Wu
Yibin Chen
Feng Zhang
Jennifer Keller
Teng Ma
Lin Ye
Henry Kwang
Chunjing Bian
Yi Xiong
Qiang Chen

Junjie Chen
(M.D. Anderson)

David Ferguson
(Dept. of Pathology)

Support:
NIH, DOD, ACS