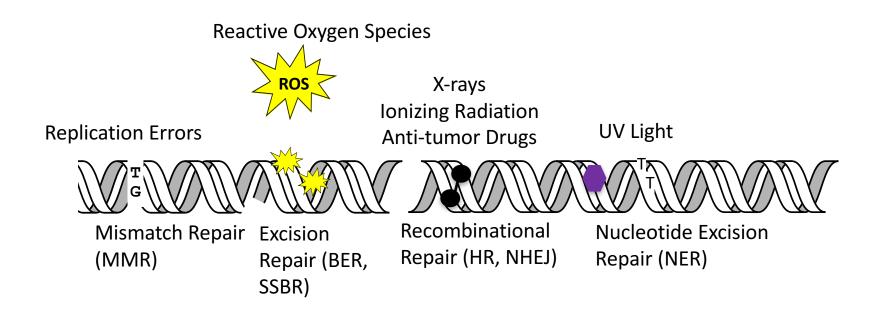
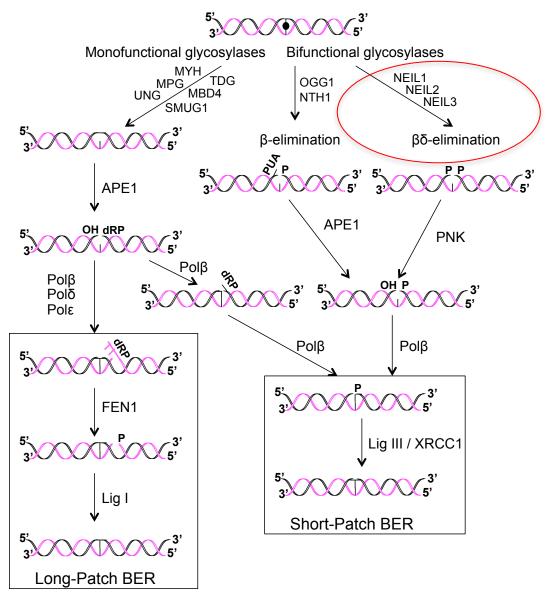


Structural and Biochemical Studies to Assess Protein Interactions and (re)classify VUSs

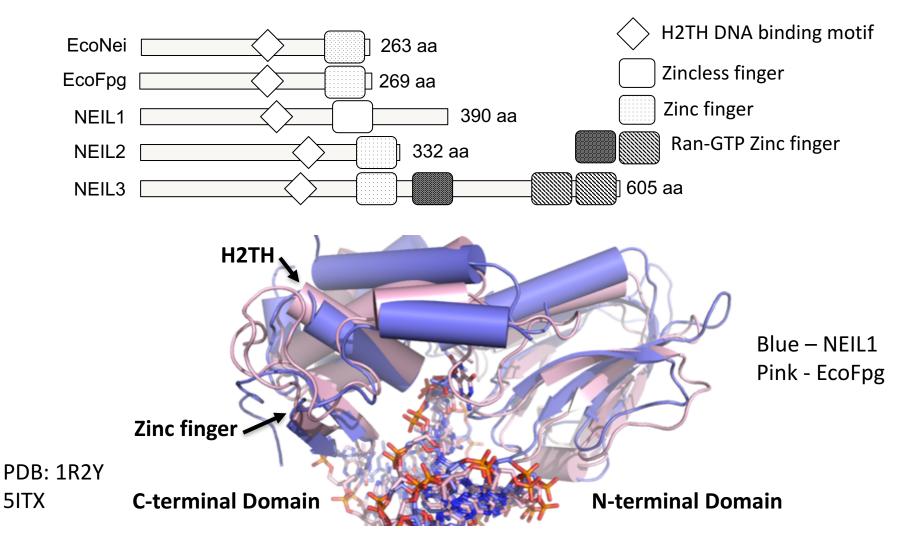
Aishwarya Prakash

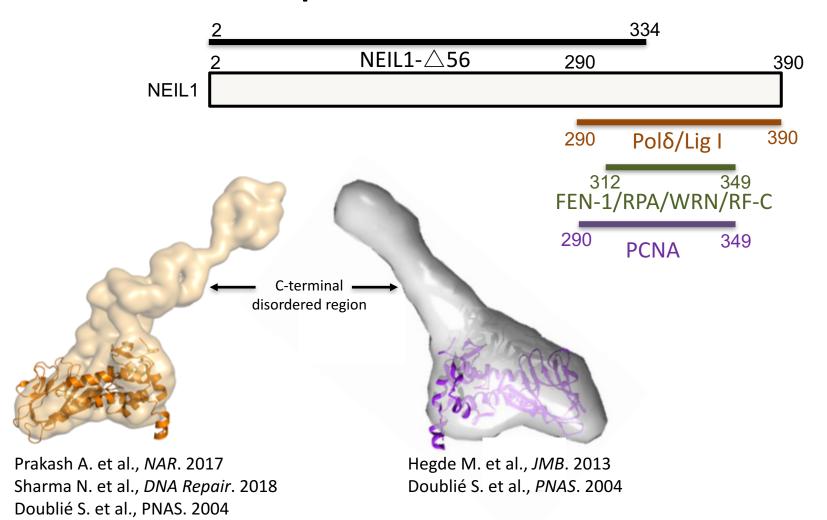
Assistant Professor of Oncologic Sciences
Mitchell Cancer Institute


DNA Repair Video Conference Feb 19th, 2019


Outline

- PART I: Specialized functions of the NEIL1 DNA Glycosylase
 - BER & NEIL1
 - The interaction between NEIL1 and mitochondrial SSB, in vitro
 - Concluding remarks
- PART II: (Re)Classification of Variants of Uncertain Significance in Lynch syndrome patients
 - Identification of Variants of Uncertain Significance
 - Functional Characterization
 - Concluding remarks


DNA Damage and Repair Pathways


PART I: Base excision repair & NEIL1

Structural features of the Fpg/Nei DNA glycosylase family

The C-terminal tail of NEIL1 is involved with protein interactions

Role of NEIL1 in mitochondrial DNA repair

The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase

Vladimir Vartanian*, Brian Lowell*, Irina G. Minko*, Thomas G. Wood[†], Jeffrey D. Ceci[†], Shakeeta George[‡], Scott W. Ballinger[‡], Christopher L. Corless[§], Amanda K. McCullough*, and R. Stephen Lloyd*[§]

Repair of Formamidopyrimidines in DNA Involves Different Glycosylases

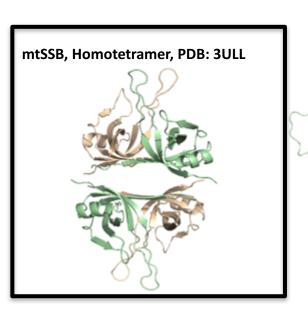
ROLE OF THE OGG1, NTH1, AND NEIL1 ENZYMES*S

Received for publication, August 9, 2005, and in revised form, October 7, 2005 Published, JBC Papers in Press, October 11, 2005, DOI 10.1074/jbc.M508772200

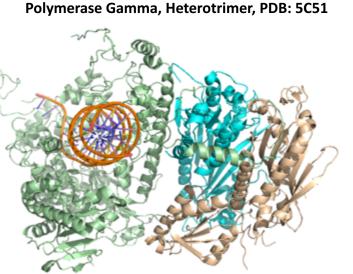
Jingping Hu⁺¹, Nadja C. de Souza-Pinto⁺¹, Kazuhiro Haraguchi⁵, Barbara A. Hogue[†], Pawel Jaruga[¶], Marc M. Greenberg⁵, Miral Dizdaroglu¹, and Vilhelm A. Bohr⁺²

Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions

Ricardo Gredilla, a,1 Christian Garm, a,1 Rikke Holm, Vilhelm A. Bohr, b and Tinna Stevnsnera,*

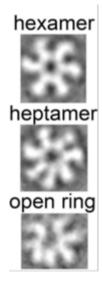


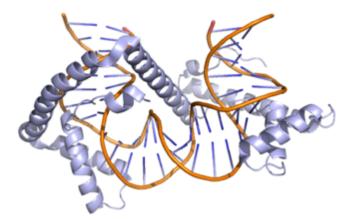
Nidhi Sharma

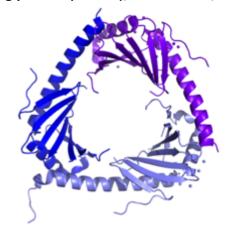

Question:

Does NEIL1 interact with proteins associated with mtDNA replication?

Some proteins involved with mitochondrial DNA maintenance




Transcription factor A (TFAM), PDB: 3TMM

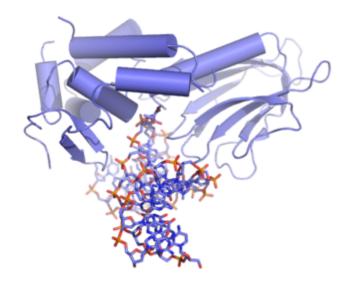


Complement Component 1, q subcomponent binding protein (C1QBP), homotrimer, PDB: 3RPX

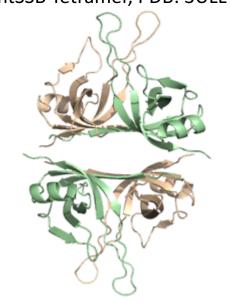
Twinkle helicase, Nucleic Acids Res. 2015 Apr 30; 43(8): 4284–4295.

Sharma N. et al. *DNA Repair*. 2018 Prakash Lab, unpublished. 2018

A combined approach to studying the interaction between NEIL1 and mtSSB

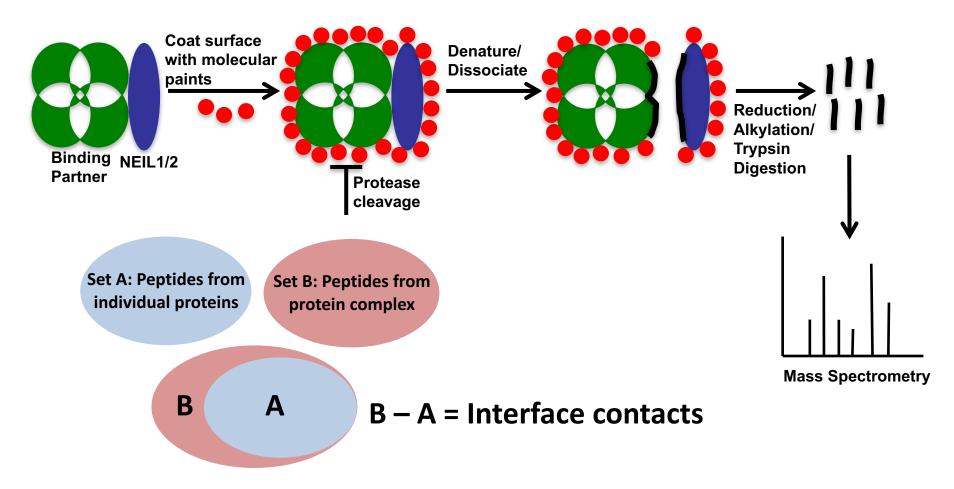

Structural Interactions between NEIL1 and mtSSB in solution

- Protein Painting & Far-western analysis
- Size-exclusion chromatography (SEC), Multi-Angle Light Scattering (MALS), & Small Angle X-ray Scattering (SAXS)



https://fineartamerica.com/featured/protein-structure-epstudio-design.html

NEIL1-DNA, PDB: 5ITX



mtSSB Tetramer, PDB: 3ULL

Yang C. et. al., *Nat. Struct. Biol.* 1997 Zhu, C. et. al. *Proc.Natl.Acad.Sci.* 2016

Protein painting to determine interface contacts

Examples of molecular protein paints

RBB,
Anthraquinone

ANSA,
Naphthalene
Derivative

CR (Congo red), Acryl azo compound

AO50 (Acid Orange 50), Aryl azo compound

MV (Methyl violet), Triarylmethane compound

DECI,
Polymethine
compound

NEIL1 (Alone +	RBB)			
10	20	30	40	50	6 <u>0</u>
MPEGPELHLA	SQFVNEACRA	LVFGGCVEKS	SVSRNPEVPF	ESSAYRISAS	ARGKELRLIL
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	$\begin{array}{c} 12\underline{0} \\ \text{ALCFVDIRRF} \end{array}$
SPLPGAQPQQ	EPLALVFRFG	MSGSFQLVPR	EELPRHAHLR	FYTAPPGPRL	
130	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>
GRWDLGGKWQ	PGRGPCVLQE	YQQFRESVLR	NLADKAFDRP	ICEALLDQRF	FNGIGNYLRA
19 <u>0</u>	20 <u>0</u>	21 <u>0</u>	22 <u>0</u>	23 <u>0</u>	24 <u>0</u>
EILYRLKIPP	FEKARSVLEA	LQQHRPSPEL	TLSQKIRTKL	QNPDLLELCH	SVPKEVVQLG
25 <u>0</u>	26 <u>0</u>	27 <u>0</u>	28 <u>0</u>	29 <u>0</u>	30 <u>0</u>
GKGYGSESGE	EDFAAFRAWL	RCYGMPGMSS	LQDRHGRTIW	FQGDPGPLAP	KGRKSRKKKS
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	36 <u>0</u>
KATQLSPEDR	VEDALPPSKA	PSRTRRAKRD	LPKRTATQRP	EGTSLQQDPE	APTVPKKGRR
37 <u>0</u> KGRQAASGHC	38 <u>0</u> RPRKVKADIP	39 <u>0</u> SLEPEGTSAS	LE		

SSB (Alone + RBB)

ESETTSLVL ERSLNRVHLL GRVGQDPVLR QVEGKNPVTI FSLATNEMWR SGDSEVYQLG

70 80 90 100 110 120

DVSQKTTWHR ISVFRPGLRD VAYQYVKKGS RIYLEGKIDY GEYMDKNNVR RQATTIIADN

130 KE

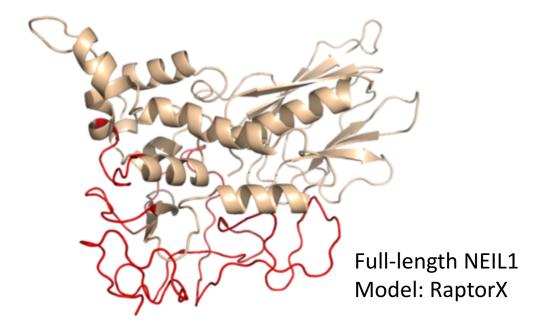
Protein Painting with NEIL1, mtSSB, and the NEIL1-mtSSBnicomplex

mtSSB Structure (PDB ID: 3ULL)

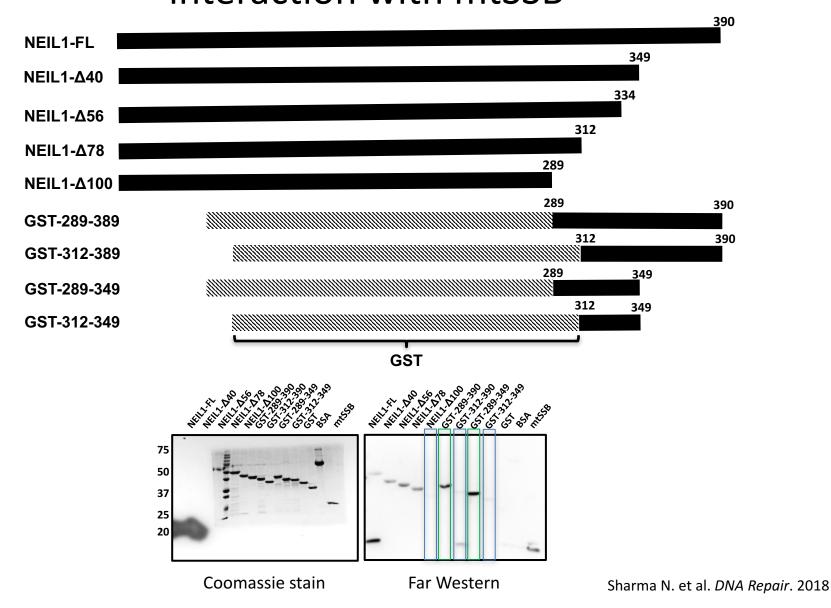
Dimer interface

Tetramer interface

Protein painting with the NEIL1-mtSSB complex

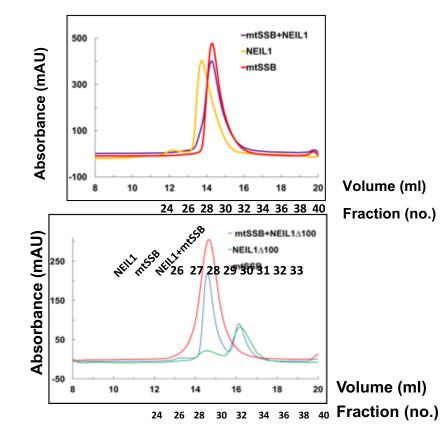

NEIL1 (NEIL1-mt	SSB Comp	plex + R	BB)	
10	20	30	40	5 <u>0</u>	60
MPEGPELHLA	SQFVNEACRA	LVFGGCVEKS	SVSRNPEVPF	ESSAYRISAS	ARGKELRLIL
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
SPLPGAQPQQ	EPLALVFRFG	MSGSFQLVPR	EELPRHAHLR	FYTAPPGPRL	ALCFVDIRRF
130	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	180
GRWDLGGKWQ	PGRGPCVLQE	YQQFRESVLR	NLADKAFDRP	ICEALLDQRF	FNGIGNYLRA
19 <u>0</u>	20 <u>0</u>	21 <u>0</u>	22 <u>0</u>	23 <u>0</u>	240
EILYR <mark>LKIPP</mark>	FEKARSVLEA	LQQHRPSPEL	TLSQKIRTKL	QNPDLLELCH	SVPKEVVQLG
25 <u>0</u>	26 <u>0</u>	27 <u>0</u>	28 <u>0</u>	29 <u>0</u>	300
GKGYGSESGE	EDFAAFRAWL	RCYGMPGMSS	LQDRHGR TIW	FQGDPGPLAP	KGRKSRKKK <mark>S</mark>
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	36 <u>0</u>
KATQLSPEDR	VEDALPPSKA	PSRTRRAKRD	LPKRTATQRP	EGTSLQQDPE	APTVPKKGRR
37 <u>0</u> KGRQAASGHC	38 <u>0</u> RPRKVKADIP	39 <u>0</u> SLEPEGTSAS	LE		

```
SSB (NEIL1-mtSSB Complex + RBB)

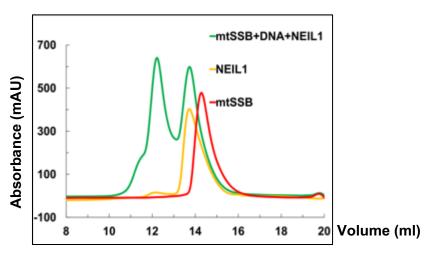

10 20 30 40 50 60
ESETTTSLVL ERSLNRVHLL GRVGQDPVLR QVEGKNPVTI FSLATNEMWR SGDSEVYQLG

70 80 90 100 110 120
DVSQKTTWHR ISVFRPGLRD VAYQYVKKGS RIYLEGKIDY GEYMDKNNVR RQATTIIADN

11FLSDQTKE KE
```



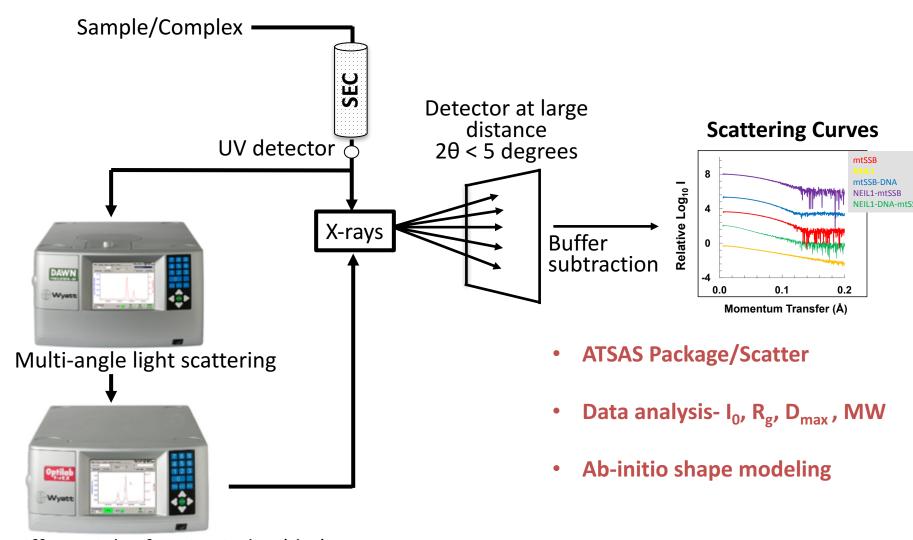
NEIL1 residues 289 – 312 are required for an interaction with mtSSB


NEIL1:mtSSB complex formation via SEC

- Size exclusion chromatography (SEC) separates molecules based on molecular weight and shape or Stokes radius.
- Molecules with bigger Stokes radii elute first
- ✓ Complex formation between NEIL1-mtSSB in absence of DNA was confirmed as the molecule is eluted as single peak.
- ✓ We noted a smaller Stokes radius for the NEIL1-mtSSB complex.

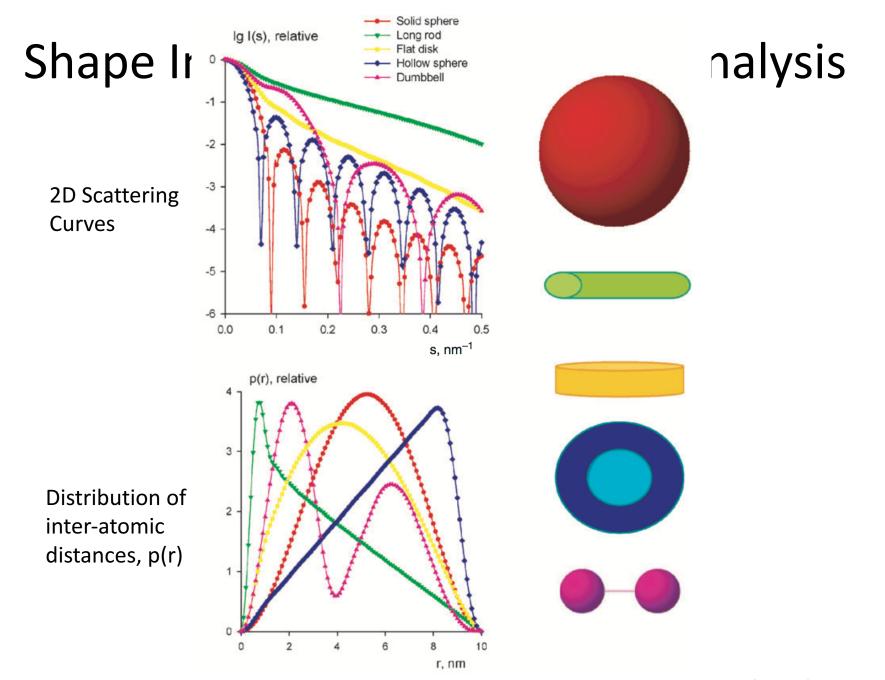
✓ Absence of the NE presidues abolishes mtSSB	the hterical molecular weight (kDa)	Elution Volume (ml)	Stokes radius (Å)
mtSSB	60.78	14.29	39.2
NEIL1	44.75	13.73	42.2
mtSSB-NEIL1	105	14.26	39.4

Complex formation of NEIL1 and mtSSB in the presence of DNA

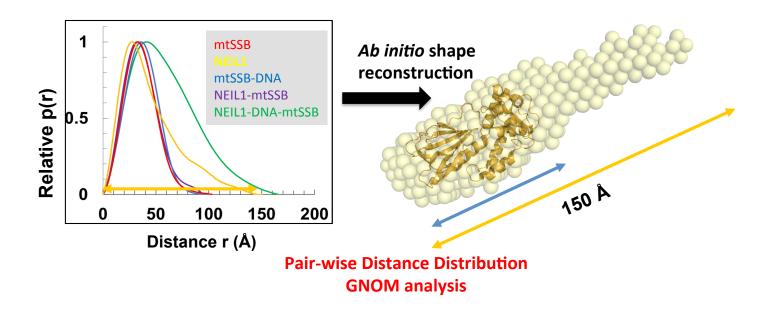

Protein/complex Theoretical molecular weight (kDa)		Elution Volume (ml)	Stokes radius (Å)
mtSSB	60.78	14.29	39.2
NEIL1	44.75	13.73	42.2
mtSSB-NEIL1-DNA	128	12.22	50.3

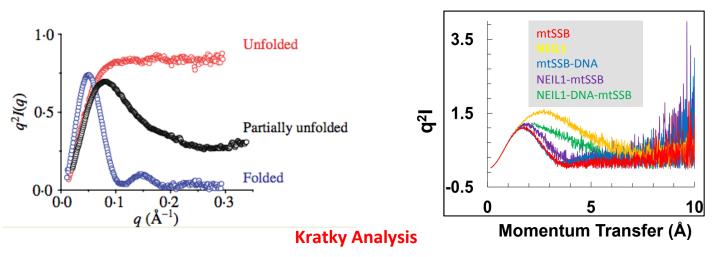
[✓] Size exclusion chromatography indicated the formation of a larger ternary complex (NEIL1-DNA-mtSSB) in presence of DNA

Information obtained from SEC-MALS-SAXS


- ➤ Absolute molar mass and stoichiometry (MALS)
- ➤ Maximum particle dimension (Dmax; SAXS)
- ➤ Size and shape of molecule P(r) function (SEC & SAXS)
- Flexibility/disorder (Kratky plot; SAXS)
- ➤ Estimation of molecular weight (MALS and SAXS)
- ➤Oligomerization state and organization in solution (MALS & SAXS)
- Low resolution molecular envelopes (Blob-o-logy; SAXS)

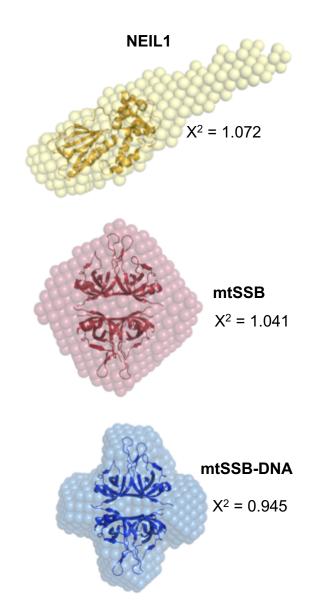
SEC-SAXS/SEC-MALS-SAXS setup


Differential refractive index (dRI)


Srinivas Chakravarthy, PhD BioCAT, Argonne National Labs

Svergun DI, Koch MHJ. Rep. Prog. Phys. **66** (2003) 1735–1782

SEC-SAXS analysis for multimeric complexes



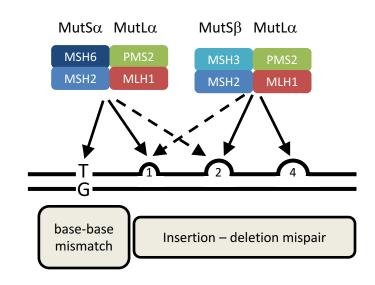
Sharma et. al. *DNA Repair*, 2018 http://www.bioisis.net/tutorial/6

Summary of SAXS and MALS data for NEIL1, mtSSB, and complexes

	mtSSB (tetramer)	NEIL1	mtSSB-DNA complex	NEIL1-mtSSB complex	NEIL1-DNA- mtSSB complex	
Structural para	ameters					
R_g (Å) from $P(r)$	27.52	37.15	28.18	28.12	46.86	
R _g from Guinier	27.44±1.21	33.04±2.46	28.40±0.86	28.48±0.80	44.83±1.80	
Dmax (Å)	103.21	149.96	98.74	94.32	165.72	
Molecular weight determination (kDa)						
Theoretical	60.78	44.72	78	105.5	123	
$MW(V_p)$	61	46	79	60.3	146.6	
$MW(V_c)$	59	36	71	55.4	134.3	
MW (MALS)	59.8±1.67%	48.5±2.23%	69±1.46%	58±1.54%	129.6±1.54%	

Ab initio shape reconstruction of NEIL1, mtSSB, & complexes

Conclusions and Significance


- ➤ NEIL1 interacts with mtSSB via its disordered C-terminal tail (protein painting, far western, SEC-MALS)
- ➤ Absolute molar mass values obtained via MALS indicate that NEIL1 interacts with a monomer of mtSSB
- ➤ The NEIL enzymes may have acquired specific functions during cellular processes such as replication and transcription
 - ➤ NEIL1-mediated disruption of replication proteins indicates a potential mechanistic switch between DNA replication and repair

Outline

- PART I: Specialized functions of the NEIL1 DNA Glycosylase
 - BER & NEIL1
 - The interaction between NEIL1 and mitochondrial SSB, in vitro
 - Concluding remarks
- PART II: (Re)Classification of Variants of Uncertain Significance in Lynch syndrome patients
 - Identification of Variants of Uncertain Significance
 - Functional Characterization
 - Concluding remarks

Leading Strand Synthesis Mismatch recognition MSH₆ MSH₂ Incision MSH6 PMS2 MSH2 MLH1 Removal MSH6 Exol **Resynthesis and Ligation**

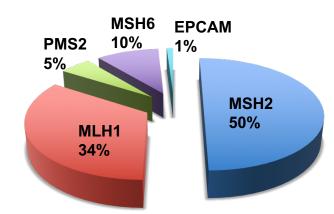
Mismatch Repair (MMR) Overview

Polymerase δ/ε

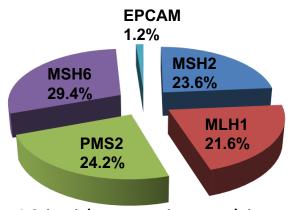
MSH6 MutSa

MLH1 MutLα

Exol (5' to 3')


RPA

Lynch syndrome and cancer


Heterozygous mutations in 1 of the 4 main MMR genes (MSH2, MSH6, MLH1, and PMS2) and EPCAM causes Lynch syndrome (LS).

LS is an autosomal dominant hereditary syndrome where individuals have a very high lifetime risk of developing CRC, endometrial cancer, ovarian, gastric, and others.

LS is one of the most common cancer predispositions, representing 2-7% of colorectal cancer cases in the US.

LS incidence based on meeting Amsterdam or Bethesda criteria

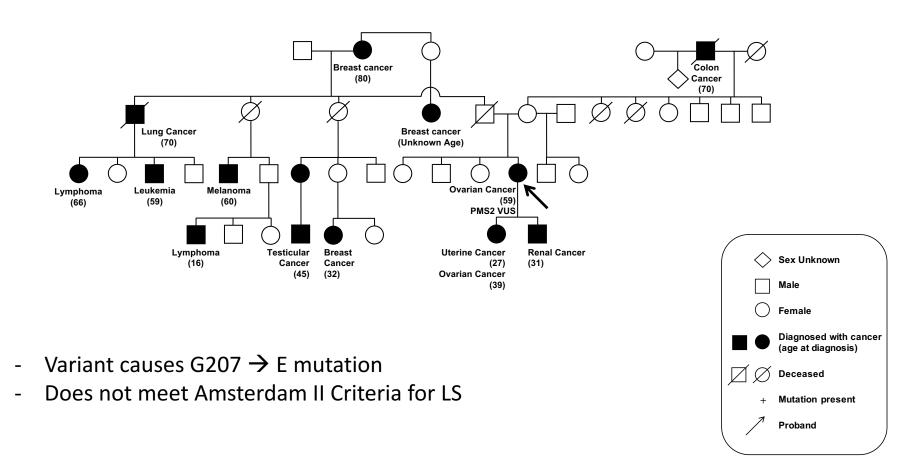
LS incidence using multigene panel testing regardless of family history

Variants of uncertain significance

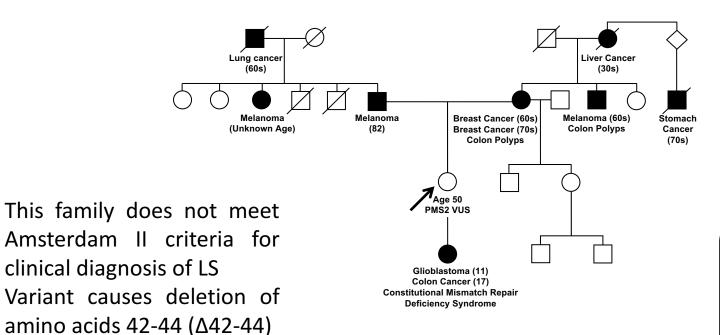
- 20-30% of missense mutations identified in MMR genes are unclassified and are called VUSs
- A VUS result complicates the medical management of patients

(Post-doc)

Brandon D'Arcy


Goal: Help with the assignment of a VUS as pathogenic or benign to assist with proper medical management.

Focus: PMS2. Of the 4 MMR genes, PMS2 has the highest incidence of VUSs.

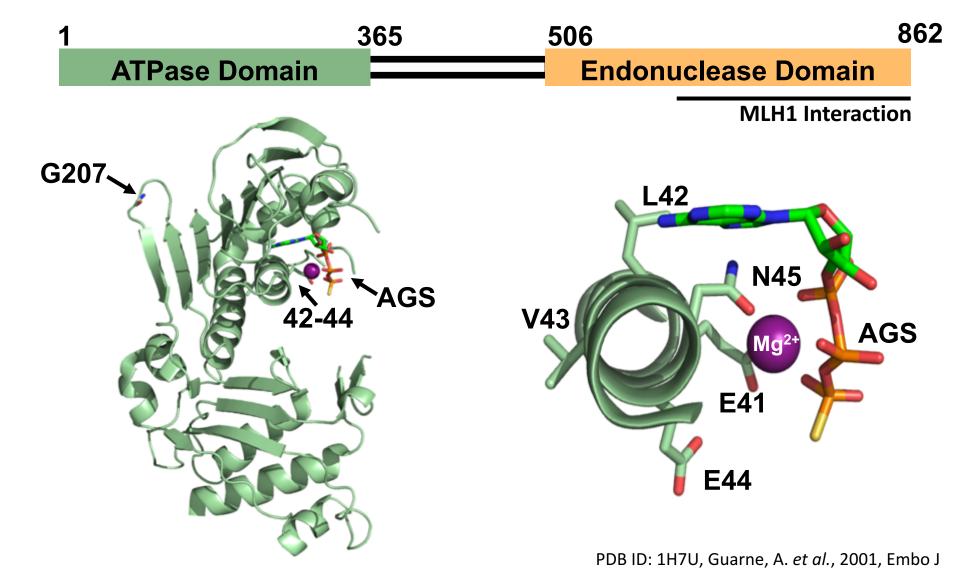

- For this talk, we will focus on 2 PMS2 variants

Jessa Blount (Genetic Counselor)

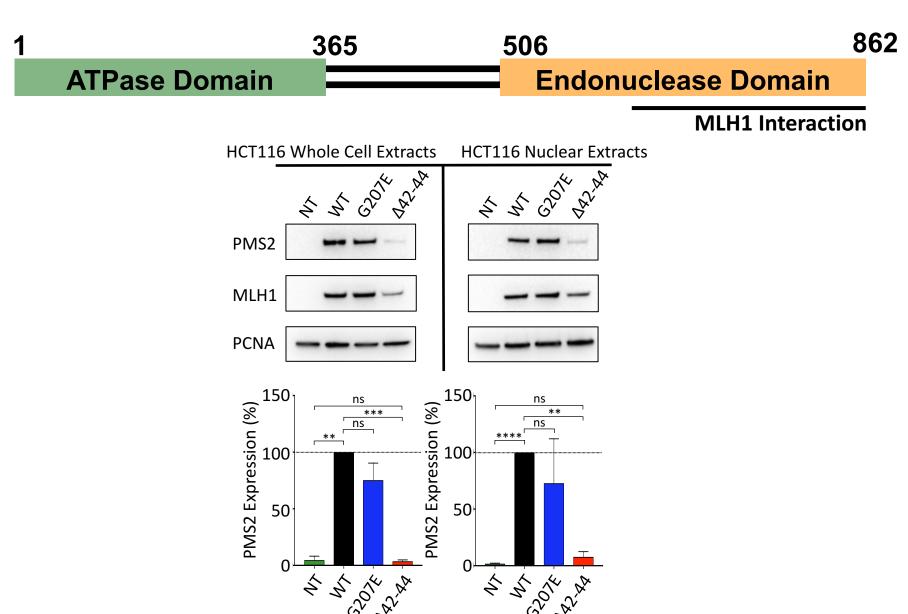
PMS2 Variant c.620G>A Family Pedigree

PMS2 Variant c.123_131delGTTAGTAGA Family Pedigree

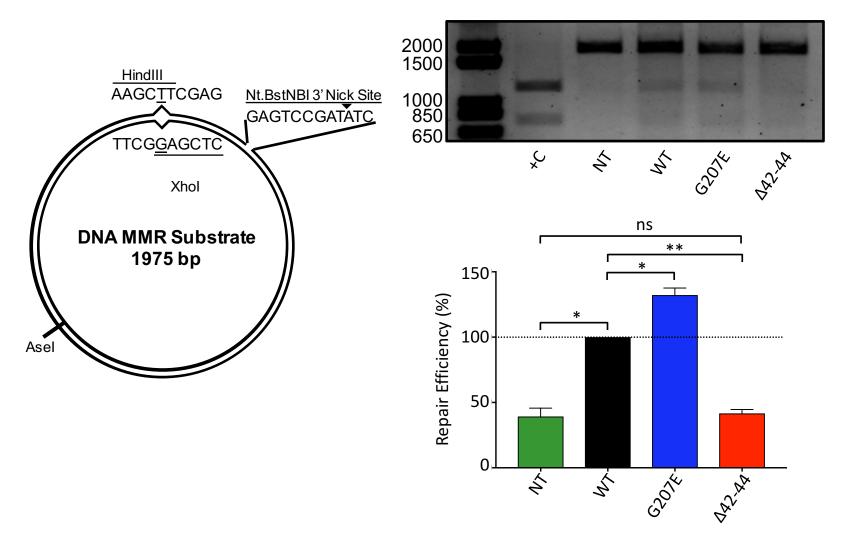
Male
Female

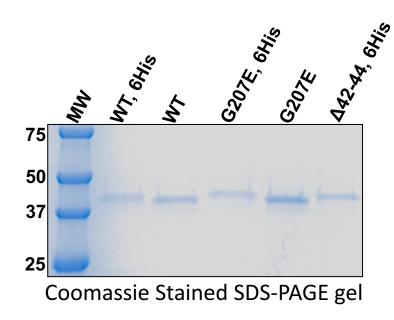

Diagnosed with cancer (age at diagnosis)

Deceased
+ Mutation present

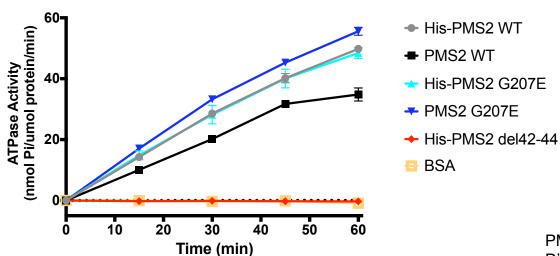

Proband

Sex Unknown

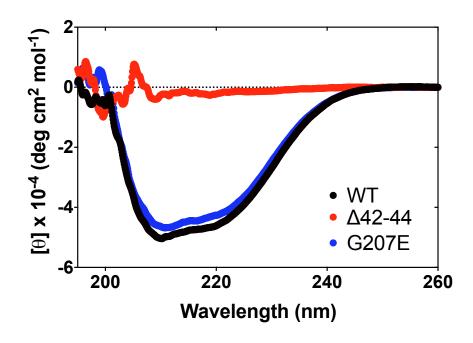

Location of the PMS2 variants


The Δ42-44 variant is unstable in cells

The Δ42-44 variant is deficient in MMR

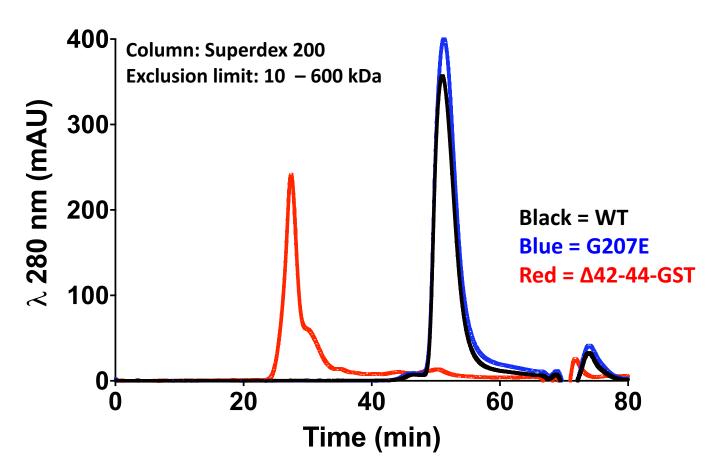


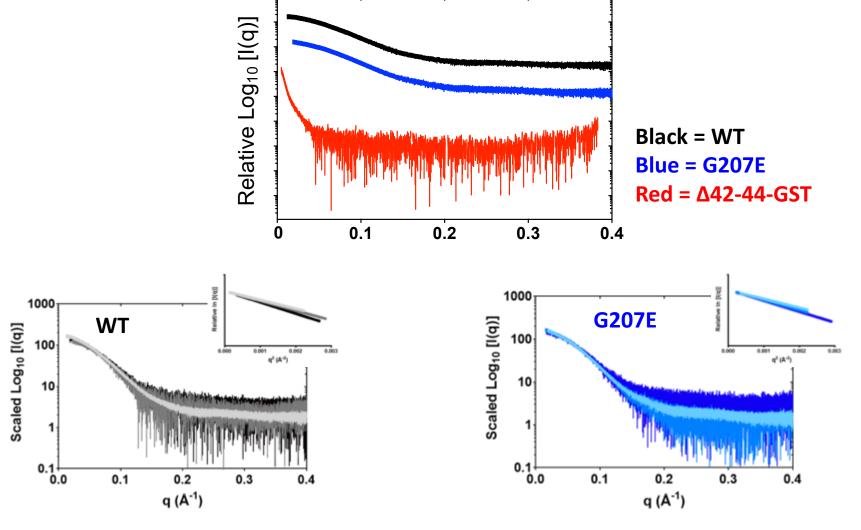
PMS2 variants: purification and activity



- Δ42-44 was insoluble and found in the pellet
- Multiple attempts to purify this variant included different tags and refolding procedures

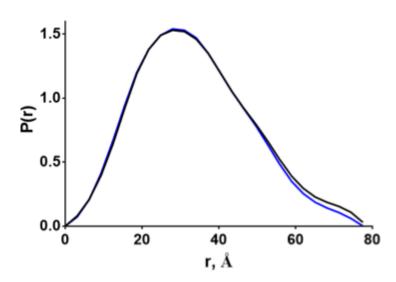
PMS2 ATPase domain construct, Wei Yang D'Arcy *et al.*, *Human Mutation*, 2019

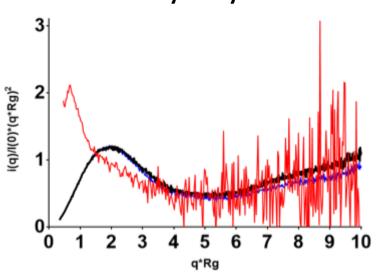

The G207E variant is properly folded whereas the $\Delta 42$ -44 lacks alpha helical elements


Enzyme	Helix 1	Helix 2	Strand 1	Strand 2	Turns	Unordered
WT	40%	8%	15%	11%	8%	18%
G207E	43%	10%	12%	9%	7%	18%
Δ42-44	0.2%	2.3%	11.3%	24.7%	17.6%	43.8%

Δ42-44 is likely an aggregated protein

1 365 ATPase Domain ~40 kDa

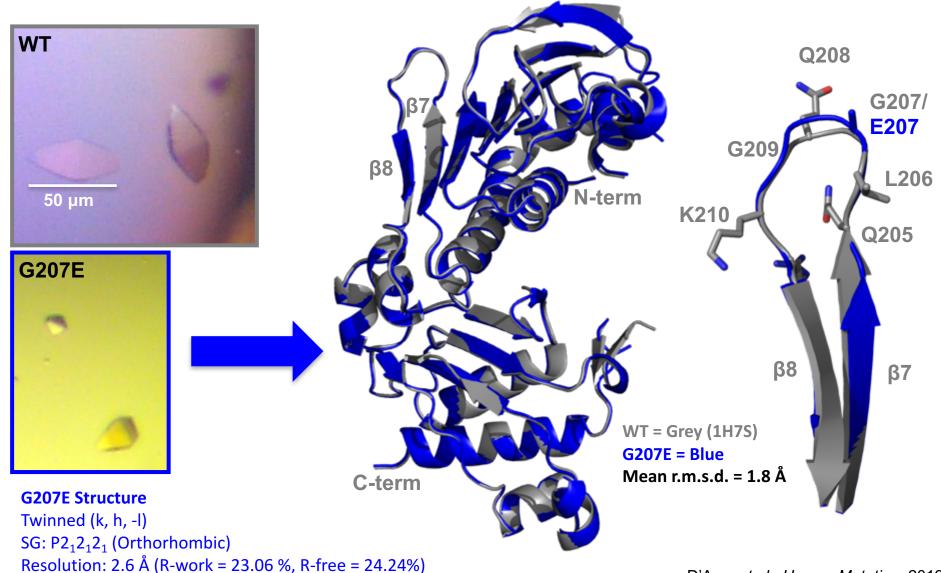

SAXS data reveal that the Δ42-44 variant is aggregated


D'Arcy et al., Human Mutation, 2019

SAXS data reveal that WT and G207E have similar properties in solution

Distance distribution function

Kratky analysis



Black = WT

Blue = G207E

 $Red = \Delta 42-44$

Crystal structure of G207E

Summary and Checklist

Goal of the study: Reclassify variants of uncertain significance as pathogenic or benign based on impact on protein function

$\Delta 42-44$ variant is:

- Unstable in cells and is MMR deficient
- An inactive ATPase
- An aggregated protein and lacks key secondary structure elements

The G207E is:

- MMR proficient
- An active ATPase
- Well folded and functions like WT enzyme

Summary and Checklist

Variant	American	Pathogenicity		
Δ42-44	Criteria	Implication	Likely Pathogenic (1 strong and 2 moderate criteria)	
	PS3	Well-established <i>in vitro</i> or <i>in vivo</i> studies to support damaging effect		
	PM1	Located in a mutational hot spot and/or critical and well- established functional domain (active site)		
	PM2	Absent from controls (or at extremely low frequency in recessive)		
	PM3	For a recessive disorders, detected in <i>trans</i> with a pathogenic variant		
	PM4	Protein length changes as a result of deletion		
	PP3	Multiple lines of computational evidence support a deleterious effect on the gene or gene product		
G207E	BS3	Well-established <i>in vitro</i> or <i>in vivo</i> studies show no damaging effect on protein function	Likely Benign (1 strong and 1	
	BP4	Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, etc.)	supporting criteria)	

In the future:

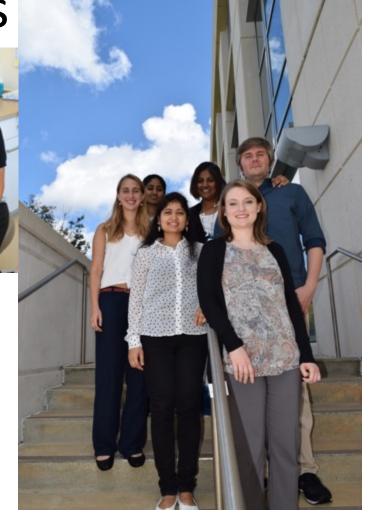
- We hope to study and assist with the classification of variants to help with medical management
- Develop high-throughput assays to assess pathogenicity

Acknowledgements

Prakash Laboratory

Nidhi Sharma, Ph.D.
Brandon M. D'Arcy, Ph.D.
Monica Pasala
Jennifer Arrington
Mackenzie Terry

Collaborators:


Jessa Blount, MS, CGC (MCI) Lew Pannell, Ph.D. (MCI) Lindsay Schambeau (MCI) Bill Copeland, Ph.D. (NIEHS) Vijay Rangachari (USM)

Synchrotron Access:

- Srinivas Chakravarthy, Ph.D.

Advanced Light Source: SIBYLS

- Susan Tsukatawa, Ph.D.

Current & Pending Funding:

NIEHS: R00-ES024417; ONES R01-ES030084 Mitchell Cancer Institute, Start up Funds

Past Funding: NIEHS: K99-ES024417

Thank you & Questions