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Female Speaker: 

So, similar to yesterday we’re going to have our three morning speakers make their presentations, and then Dr. Michael Wolfson, who is the Assistant Chief Statistician, Analysis and Development at Statistics Canada, will moderate the question and discussion session, which will run from 11:30 to noon.  And our first speaker today is Dr. Scott de Marchi, and he is going to provide the view from political science.  Scott is an Associate Professor of Political Science at Duke University, and Scott’s research focuses on the fields of computational political economy and other mathematical methods, individual decision-making, the presidency, and public policy.  At Duke, he teaches a class on the nature of freedom, and he’s written a book on the foundations of mathematical methods in the social sciences entitled Computation and Mathematical Modeling in the Social Sciences.  So, I’d like to welcome Scott.  Thanks.

Scott de Marchi: 

Hi.  I -- my training, like a lot of people, is a little bit idiosyncratic, so I’m not going to be able, like some of the speakers yesterday, to say a lot about political science directly.  Most of my life was spent in a computer science department and I left, by and large, because computer science, and I think this is one of the signs of the decay of a discipline, turned to formalization, increasingly.  There was a battle, and that’s not really overblown, between the people that wanted to solve problems and the people that wanted to work on math.  And a lot of times those are intention.  And yesterday, if you saw the talks, I think the same claims are more or less made by a lot of the speakers about current microeconomics in economics departments.  

I switched, believe it or not, to history for a couple of years, and the same battle’s being fought but had already been lost.  Most of you will notice that history departments are a little bit different than they were 20 or 30 years ago.  And the people that wanted to study sort of, you know, wars and diplomacy were losing out to people that wanted to do something very different.  And so I’ve switched now, again, back to more mathematical stuff.  And I’m thankful that you folks invited me to talk because I think the computational crowd generally, in some ways, needs you more than vice versa.  If we don’t do applied work, and it’s going to be one of the threads of my talk, I think bad things will happen.  And bad things have happened to other fields and other fads in methodology. 

So, a couple of things I would like to ask your tolerance for.  I’m going to run over a brief, you know, story from history.  And then I’m going to switch to games, toy models of the sort that Scott Page was talking about yesterday.  And like a lot of you, I’m going to base this on statistics.  I would guess, given your training, that most of your time is spent studying statistical models, and it turns out that even though I do computational work, about 80 percent of my time is spent either teaching econometrics, which is what you folks call biostatistics, or doing statistical work myself.  So I’m going to make the assumption that stats is the lingua franca of everyone in the room.  If that’s wrong, it’s too late.  

[laughter] 

So how did we get here?  History, believe it or not, used to be the sort of parent of all of the social science disciplines: economics, politics, sociology and the rest.  And they made claims that are not so different from some of the claims that were made yesterday by the epidemiologists in the room.  It started off in a bad way.  In the 19th century, you probably know there weren’t very many colleges or universities.  They didn’t do research.  They were finishing schools.  Some might accuse schools of Duke like being finishing schools, given the tuition costs and the people that go there, but we’re not.  

But research was not the first goal; religion was the first goal.  Inculcating gentlemen with the right values was the second goal.  And a lot of disciplines wanted to professionalize.  And professionalization, ultimately, you know, meant math, believe it or not.  But if you look at the people at the turn of the century when they started to do sort of theory work, they do not sound so different from you.  Frederick Jackson Turner is one of the most famous historians ever, and if you read this quote, he’s talking about systems theory: “Up until our own great day, American history’s been in large degree the history of the colonization of the Great West.  The existence of an area, free land, its continuous recession, and the advance of American settlement westward… Behind institutions, behind constitutional forms and modifications, lie the vital forces that call these organs into life and shape them.  The civilization in America has followed the arteries made by geology, blah, blah, blah, blah, blah.”  

He had a theory, though, and the theory was kind of neat.  The theory was as long as we had a frontier, you know, westward territory, we were going to avoid the perils that had beset Europe.  So we wouldn’t have urban strife, we wouldn’t have a lot of the problems that people had in Europe.  And he had a frontier theory, and this actually guided policy for the better part of 70 or 80 years in American foreign policy.  A lot of people wanted to push us on a natural science model, us being historians.  So Henry Adams, Herbert Baxter Adams, they could read Darwin.  

And one of the things that’s hard to remember about this time period is social scientists could read natural scientists, which is not so much true anymore, by and large.  And they based a lot of their models on evolutionary models.  Herbert Baxter Adams, for example, advanced the Teutonic seeds theory.  I imagine no one’s heard of it, but it’s the idea that everything good in German -- in civilization comes from sort of German Teutonic seeds that sort of percolated through England and then ended up on our shores.  And they were, you know, claiming they were doing evolutionary work.  

Things went south.  And the moral of the story is things can go south surprisingly quickly.  By 1931, the interwar period, Becker, who was one of the presidents of the American Historical Association, wrote this: “It must be obvious that living history, the ideal series of events that we affirm and hold in memory, since it is so intimately associated with what we are doing and what we hope to do, cannot be precisely the same for all at any given time, or the same for one generation as for another.  History in this sense cannot be reduced to a verifiable set of statistics or formulated in terms of universally valid mathematical formulas.  It is rather an imaginative creation, a personal possession with each and every one of us, Mr. Everyman, fashions out of his individual experience, adapts to his practical or emotional needs, and adorns as well as may be to suit his aesthetic tastes.”  

This is a cliff, right?  In terms of a discipline that thought it was doing a natural science model, in about 40 years, you end up with this, and it keeps going.  The next -- you know, skip a president, Beard writes more or less the same thing.  And if you think about it, the question is what happened and could it happen to us in the social sciences?  There was a brief consensus after World War II, driven by and large by the government wanting historians to be useful for a while.  And the interesting thing, for my story at least, is they didn’t agree on what the end of history was, that they were doing causal work.  There was significant disagreement about whether or not you could do causal work.  

They did agree, though, on method, okay?  And historical method, or historiography, as it’s called, is a little bit wacky.  It’s mostly getting the facts right, and it’s hard to overstate how much they cared about facts, but the training of a historian is you get two years of coursework, they send you off to an archive, and they give you some sort of nice advice, like bring Kentucky bourbon, since they usually can’t get that for a cheap price, to bribe the people in the archives to let you see the good stuff.  And make sure you have cards that are all the same size so you can put them in a nice little box to bring home with you and have a record of what you actually looked at in the archives.  It’s not very sophisticated in terms of methodology.  But they did care about it, which may seem odd to you.  

And I want you to tell the -- a story about David Abraham and the end of history as we know it, and how at most universities, history went from a social science to a humanities department.  David Abraham was a fellow who, not so long ago in the ‘70s, got trained in German history.  And in German history, there’s a debate, and it’s an interesting debate about whether the Germans are evil, you know, innately, or whether the Nazis were just bad and hoodwinked them.  And this matters at the margin -- I don’t mean to make light of it.  And the reason it matters is if it could happen anywhere, that indicates we should all be worried.  Or it could be unique to the Germans, in which case we don’t so much need to worry.  Okay?  So it’s an interesting historical debate as far as historical debates go.  

Abraham was a socialist and he thought that German industrialists were complicitous in the rise of Nazi party to get war profits.  So it’s, you know, a military industrial complex story, with sort of a Marxist crunchy exterior.  The bad news is that there were a bunch of famous historians who didn’t agree with this story.  And Abraham, like a lot of young people going to the archives, made a bunch of errors in his book.  It was accepted at Princeton, it was up for an award.  He got a job at Princeton, a tenure-track job, and the older historians who didn’t much care for him sent their graduate students to the archives to replicate his work.  

Now, have any of you ever looked at a history book, academic history?  About each page, half of the page is footnotes.  There’s very little text in these monographs, mostly they’re footnotes.  And this is, you know, privileging the fact above all else.  And they found two or three hundred mistakes in a four or five hundred page book.  So for them, the antagonists, that was the end of it.  He’d basically been falsified and he was malicious in their view.  So they began a phone call, you know, campaign to drive him from the discipline.  They got him -- his book taken off the press.  He was taken off of the list for the award, and he was ultimately driven from the discipline.  He’s an investment banker now, or is he a lawyer?  He’s one of the two.  Something that makes the story, you know, make sense in a cosmic way.  

[laughter] 

But the -- again, the interesting thing for our purposes is that one of the journals actually took the time to print a list, like Excel spreadsheet format, of all of his errors and then a committee evaluated whether the error was neutral to his argument, helped his argument or hurt his argument once it was corrected.  And the crisis for history, and again, I can’t overstate this, is that people realized that this was not of itself sufficient to prove that something was false.  You could make errors but your theory might still be right.  And the converse is that you might make no errors and your theory could ultimately still be wrong.  

So they actually had a crisis of method, and history’s changed a little bit.  Natalie Zemon Davis is an historian at Princeton and is famous by their lights, and method has changed.  If you look at the brief quote, you probably -- some of you are not old enough to have watched this movie, it was “The Return of Martin Guerre,” it had Gerard Depardieu in it.  I don’t even think anyone knows who he is anymore, but her claim about her historiography and method is distinct from the natural science model was, “Watching him, the actor, feel his way into the role of the false Martin Guerre gave me new ways to think about the accomplishments of the real impostor.  I felt that I had my own historical laboratory, generating not proofs, but historical possibilities.”  

So the brief story is this is about a man who in the 15th century disappears for a war in France, and someone comes back and claims that he is this man and is the husband of the wife that was left behind.  They hook up, and it’s discovered that, after the fact, that he’s an imposter, and in that time period, that’s a hanging offense.  They actually did kill the guy.  That’s not so good in that time period.  But instead of going through the archives and the documents and all the rest, of which there are not many from the 15th century for peasants, they did not write a whole lot, it turns out.  She looked at a movie production that she was a consultant on and used that as her historical laboratory.  That’s a different kind of history, obviously.  It’s clearly not the natural science model, and most historians are self-identified as members of the humanities these days.  They’re not social scientists anymore. 

So, as with all fads and fashion in methods, the question is can computational science help you?  And unlike -- like Scott Page, I’m going to present you a couple of toy models today so you can think about these issues.  I think that’s a good way to go.  Unlike Scott, my parents were not as nice to me when I was a child so I’m a little more pessimistic than he is.  I think there’s enormous opportunity for computational modeling to help with big questions.  I also think that, like a lot of fads and methods, that there is some chance that it might disappear, so we’ll see.  But the bottom line is, we have to do applied work.  

So, political science -- this will be about all I say about it.  The good news about us as a group is that we are very ecumenical and we study behavior, which is probably of interest to you.  We have, you know, people doing fMRIs, we have social psych people, we have a lot of people who increasingly are good at pure statistics or applied statistics and do bargaining models and computer science.  So my training is not really all that idiosyncratic in one sense.  And we do study most everything, from ethnic violence to interstate conflict to individual decision making, from elections to all sorts of public health concerns and public policy.  

And like you, we study statistics, by and large.  It’s the language that everyone uses to convey results, and we do a lot of hand wringing about it.  I don’t know how much hand wringing you do, but the causation question and work like that of Judea Pearl and computer science, we actually read that stuff and take it seriously and worry about correlation versus causation, and you know, again, lots of hand wringing.  And unlike history, we would not study something like the causes of World War I.  We don’t care.  There’s no such thing as World War I.  We’d study war.  If you can’t make it a general class, you can’t do statistics.  If you can’t do statistics, we don’t so much care about it.  So that is where political science is currently.  

My first example is taken from Scott Page.  He didn’t use it, so I’m going to.  And I want to briefly, even though it was done yesterday -- I’ve cut a lot of this last night to try and not be redundant -- talk a little bit about how we do things and how our methods are different.  We have three main schools.  We have the applied stats group, which you will understand.  The deductive group, which was talked about yesterday, mostly in negative terms, and it’s fortunate we don’t have members of the econ department that would rush the podium today.  And the computational perspective.  So here’s the problem.  Has anyone ever been in a crowd and you wonder whether or not you should stand and ovate at the end of it?  Has this caused any of you any angst?  It might.  It’s something you might want to think about.  The thing you want to be clear on, you do not want to be the only fool standing, clapping wildly.  Okay?  For most people that would be humiliating.  

On the other side, you do not want to be the only person sitting in your seat like the Grinch, okay?  So I’m going to actually sound game theoretic for a moment here.  You have a utility function.  And your utility has terms for things like not being humiliated, okay, we can all agree on that.  The question is how do you study this problem?  The one approach that you’ll be most familiar with is the applied stats approach.  You would come up with the dependent variable, okay?  It could be the length of the ovation, it could be whether or not there is one, and then you do a logit to probit model.  It could be how many people are standing so that you get a continuous variable with more variants, woo hoo.  

You’d ask the usual questions of all the people that are in your observation: demographics, performance type, audience size.  You’d run a model, and you’d have the usual problems.  Your data would probably not be IID, right?  Performances might have inter-reactions between them, you know?  There’s buzz, positive buzz or negative buzz.  There might be interactions between people in the audience, so if your unit of observation is an individual, they sit together and they don’t come in individually, they’re not independent.  People don’t talk about non-IID, it lurks behind a lot of models and it’s kind of an ugly problem.  But we do like sample bias and multicollinearity, and you know, all sorts of other stuff.  And we would talk about that in our model.  And the information we would get would not be valueless.  We’d actually come up with a model that could more or less predict, possibly, if we’re interested in out of sample work, the incidence of whether or not there’s going to be a standing ovation or how long it’s going to last, and the like.  Okay?  So the information is not useless, and this is the kind of work that I would say about 80, 85 percent of the social scientists spend their time doing, okay? 

Game theory’s a little different.  Game theory, we would actually write down a utility function, and we’d write down the sequence of moves that are available to you.  And in this case, it’s pretty easy.  Your utility function is probably to avoid humiliation and to reward a good performance.  And the sequence or strategies available are you can stand up or you can sit down.  It’s not rocket science.  What might be rocket science is how you would come up with an equilibrium play, and backwards induction, as was noted yesterday, is the sort of tool of choice.  I don’t think this should be as privileged as it is.  There are claims made that backwards induction is rationality by a lot of social scientists.  That’s obviously goofy and wrong.  But backwards induction is an algorithm, it does solve some problems, and most problems are put in the form of a tree, so backwards induction works.  

But as noted yesterday, there’s no dynamics, there’s no knowledge of what happens in this equilibrium.  The games are brittle, there’s no equivalence classes for games.  If I have a game for standing ovation and someone else does, there’s no correspondence between them, they’re just different.  There’s no way to say that they’re kind of sort of similar.  And usually, questions like how does everyone start standing up?  If we all have this in the back of our heads, not wanting to be humiliated, would anyone ever stand first in a deductive model?  It’s actually tough, so the question is, how do you get it to happen?  You probably have some exogenous parameter for, you know, a move by nature.  How good the performance is.  And then some people would have a function that they respond to that and stand up by force, more or less, and all the interesting work in the model, the standing up and then the sitting down again -- which is equally problematic.  When do you stop ovating?  You don’t want to be the first person, right?  All of that, you know, problematic stuff is swept under the rug of exogenous parameters.  A move by history.  So I find this deeply unsatisfying even though, again, I spend a lot of my time doing deductive work of this kind.  Okay, so that’s game theory.

And one last note on that.  Deductive work does, you know, work in the sense that we do have some really, really strong results that are really general.  For example, all of you who believe in democracy, you should Google when you get home the Arrow result, A-R-R-O-W, Kenneth Arrow, won a Nobel Prize for it.  But democracy doesn’t work.  It’s not a good aggregation mechanism for preferences.  It’s just wrong and evil.  

[laughter]  

And can be manipulated.  So when you are in a room or in a meeting with a social scientist, we are good at one thing, and that is manipulating other people to come out with outcomes that we prefer and you might not.  So deductive work has its role and I don’t want to understate that.  

Computational models.  It’s not so different from game theory in the sense that you’re going to write down a utility function ultimately for your agents.  What is different, as I think was abundantly clear yesterday, is you can include a lot more, and it’s way, way, way easy to add in things that are interesting and you think essential to the problem.  Now, the converse again is the kitchen sink approach, which is you just add in everything that might be plausibly be described or be interesting to you, does not work.  And the problem is, and I think you can understand this from a stats perspective, is it’s the same reason you don’t add everything to a statistical model, okay?  A lot of times, if you open up a paper and you look at it and they have eight or 50 independent variables, and then they have every possible polynomial up to some order of all those variables, and then they have all the interactions of those variables, well, what would you do with that paper?  You might put it down if you’re sensible, right?  

And the thing that people learn that’s pathological is degrees of freedom, you know, more observations than you need, that’s actually wrong and false and we’re going to talk about that.  You actually need to span your parameter space.  So one of the problems with computational models, and this is true not just of them but also of a lot of statistics, like non-parametric stats, is that the dynamics are opaque because there’s too many moving parts and the parameter spaces are too big.  So the question I’d like to ask is how can we actually make everything better? 

So the limiting questions.  Why are things so hard is the first question.  Second question is how can these different approaches co-exist?  I think there’s a case to be made that they should co-exist and the only way to make real progress is if we come up with a system to make them co-exist.  Third question is how to make interdisciplinarity work, which I don’t think is easy.  And last, how does one build more complicated models?  So I’m going to get to the crunchy toy games part of the talk.  

But first, everybody lies.  We have a shared methodology in political science -- that is Gregory House, a rotten television show.  My friends bought it for me because they claim that I was as horrible as he was.  My wife says that I am not because I don’t have writers, so I can’t be.  

[laughter]  

So that’s a plus and a minus.  I’ll take it as a compliment.  But one of our better statistical people, Chris Achen, in 2002, wrote this about our empirical work: “Empirical work, the way too many political scientists do it, is relatively easy.  Gathering the data, run the regression or MLE with the usual list of control variables, report the significance, and announce that one’s pet variable has passed.  This dreary hypothesis-testing framework is sometimes even insisted upon by journal editors.  Being purely mechanical, it saves a great deal of thinking and anxiety, and cannot help but being popular.  Propose the following simple rule: any statistical specification with more than three independent variables should be disregarded as meaningless.”  

How many of you would still have publications if we adhered to this rule?  I would not, I will confess.  I would have no publications if I only had three independent variables.  And the question you should ask is does this apply to computational work?  Yesterday, and I think I agree with this, is the allure is that you can add all these things you think are important.  But the question is, is computational somehow exempt from rules like this that you might want to apply to your statistical models?  And some ugliness, I can’t help myself, this is from political science.  If you look over here, these are, you know, more or less whether or not something is significant for coefficients that people thought were interesting in their models, and this should cause you a little bit of a belly laugh.  What does this slide tell us?  It tells us that the .05 mark is magically wonderful, and that should not be, right?  If we run model after model, we should get a nice monotonic decreasing slope where we get more .10s than .09s, more .09s than .08s.  And instead what we find is we get this little peak at .05, which if you think about it, and that’s an awfully long tail that doesn’t really correspond to what you’d expect there either.  That’s reasonably humiliating. 

But there’s also medicine.  There’s been a lot of self studies and a lot of people aggregating individual studies and are finding the same things, that there’s a lot of mistakes everywhere and a lot of work is more or less falsified within five years of it being published.  I think it’s fair to say that you could do a coin toss and come up with a good test for whether or not an article is right or wrong.  So it’s not just us.  So, why do we lie?  Two hypotheses: number one, we don’t lie.  Our methods are blown and if we just switch to something else, maybe computational, things are going to get better.  Hypothesis two is we can’t help ourselves.  The experiments where you show people random zeroes and ones and we magically see a pattern, imagine sitting in front of Stata or R or, you know, your favorite stats package, you magically see patterns.  You can keep re-running things until you do. 

So the question is, are things any different in computational land?  My answer’s going to be no.  I’m going to be more optimistic about this soon, but we have a little veil of tears to go through first. The problem is the curse of dimensionality, which I want to talk about briefly.  Sorry…  So, the curse in action for people that are visual.  I’m not particularly visually motivated by learning or -- that doesn’t parse, but ignore it.  If you look, I have data, which are the Xs, and the question is, what kind of model would you fit to that?  The dashed model would be more interesting in the sense that it perfectly matches my data.  The sample would be nicely described by it.  And if you look at the solid line, that would be a more parsimonious model that wouldn’t have so many moving parts to it.  

And the question is how do we choose?  What would we do to discriminate?  If we just used sample -- you know, scratch summary statistics, we’d obviously choose the dashed line, right?  The dashed line on any summary statistic is going to beat the snot out of the solid line.  Why does the solid line have some appeal?  It’s simpler, it means in some way that the researcher has placed handcuffs on himself or herself, and that there’s some chance that if we did out of sample work, we might not get clobbered.  Here’s the thing you need to keep about -- this is a fixed sample, and we fit a curve to it.  But if we go get new data, ostensibly with the same data generating process, what are the odds that we’re going to have that more complicated model maintained?  Almost zero in most cases, okay?  So once in a while, or more often than that, we should place handcuffs on ourselves.  So that’s the curse. 

The curse, though, is uglier, and the question is if you want if to be perfect, you didn’t want to make assumptions about the data.  For example, if I fit a line to it, how would a line do if I ran an OLS model?  It’d be pretty lousy, right?  Why do people do that?  Why do they run a line instead of just running a non-parametric model or something complicated, they throw in some polynomials?  One of the virtues of the line is if you don’t have a lot of data, you get to interpolate.  So, let me see if I can figure out our pointer.  You will notice that we have gaps between the data points.  We have a gap between here and here, here and here, here and here, here and here.  When you run a line or any other -- you know, something you can hold your pen down and draw it like a solid thing, what do we in those spaces between data points?  We interpolate, right?  We hope that our model is correct, but we’re wildly interpolating.  

What would be an easy statistical method that would better than interpolating and just choosing a priori something to fit to it?  The answer is actually easy.  That’s the answer.  Don’t look at it real hard.  What if you just ran the mean?  For each interval in our data, we just picked an interval and calculated the expected value of Y condition on the X there.  Would that work?  Think about the way this would work.  It’s actually cold fusion, it’s not hard.  So we’d divide up our line X into intervals, and each interval, we’d calculate the mean of the Ys there in our sample, and we’d make a point.  We’d then go to the next interval, calculate the mean of our Ys in that interval, make a new point, we’d connect the dots.  And we’d keep doing that.  

Would that work or not?  It not only works, it’s optimal.  And there’s a little bit of math there that we’re not going to go through that shows that it’s optimal.  That is the best way to do statistics, and the cool thing about it is, all those biostats courses or econometrics courses you took, you did not have to take.  You could just do expected value of Y condition upon intervals of X.  It’s really easy to get through in a class.  I’ve done it one day and then gone home for the rest of the semester.  

[laughter]  

So the question is why is this problematic?  And the answer is do you ever have enough data to do that?  If you think about it, you don’t.  So if we just have two dimensions, you’re doing intervals of X.  What if we have two independent variables, what are you doing then?  You think little cubes, right?  You have to divide each X into intervals, and then you’re doing cubes and you’re doing the mean of the Y and the cube.  If you have three Xs and four Xs and five Xs, you’re doing little hypercubes.  Do you ever have enough data to do it?  The answer is no.  

So what people do instead is they start to cheat.  They make the intervals bigger, so the neighborhood around X, they actually add a squiggle term to it so you make your intervals larger.  The problem still isn’t solved, though.  If you look under number two, assume you want ten percent of each variable to form a neighborhood, so in dividing up each X into ten blocks, each variable is real valued.  You can look at number three and four, it’s really ugly, you need the entire space for every block and you need a whole, whole lot of data.  

So one thing about the curse of dimensionality that’s sort of brutal is if we don’t want to interpolate, we don’t want to basically just draw a line with our eyes closed across spaces where we have no data.  We need lots and lots and lots and lots of variables.  And if we add these crunchy bits that everyone is more or less excited about -- we had neighborhood effects, we had time, we had space, we had adaptive behavior -- what we’re doing is we’re exponentially increasing the size of our parameter space, which means we need lots and lots of data.  There is no free lunch in computational methods.  The same reason you wouldn’t willy-nilly add variables to a stats model, you by default cannot add to this sort of model. 

So, let’s skip ahead to an example.  I’m going to argue that despite these problems, we should build more complicated models.  If anybody wants to rush the stage, there is a lip so don’t kill yourself.  This is a little voting model.  I have a red person candidate and a blue candidate, and let’s pretend that that little blue line underneath them is a space of voters.  They’re distributed uniformly.  And each of these candidates wants to maximize how many of these voters vote for them, and the voters are stupid, they vote for the nearest person.  Imagine they’re sunbathers on a beach, the way the story’s traditionally told by Downs and others, and those are vendors selling hot dogs, and the only rule is they go to the nearest vendor.  If those vendors or political parties can move wherever they want, where will they end up?  Everybody want to be confident they’re going to end up right in the middle, bumping their carts up against each other?  If one of them moves, if they’re both in the middle and one of them moves a little bit this way, what’s the other candidate going to do?  Follow him.  And they’re going to get more of the space, okay?  

This is a simple model, and if you call an economist or a political scientist on the phone and you ask, “What are the political parties doing in the upcoming election,” we will say, “They’re going to converge on the middle,” okay?  Now, let’s do a robustness test.  If we change the distribution of voters from uniform to something else, does it matter?  It doesn’t.  There’s still a median, okay, so they’re just going to move wherever the median is.  Second question is if we change the number of parties, if we add a third party or more, does that change it?  I get a yes.  What’s going to happen?  What’s the equilibrium?  Yeah, nobody knows.  There’s no equilibrium.  The problem is that you’re always going to have one person squeezed in the middle who has an incentive to pop out when they can move, and you get continual motion if there’s three or more parties, okay?  That’s not so good for -- talking to the press.  

If you change the number of issues to two or more issues, is there an equilibrium?  Turns out there’s not, unless there’s a median in all directions, which is a vanishingly slight probability.  There’s no equilibrium if you have two dimensions or more.  They’re just going to move around forever.  So in terms of the KISS model -- keep it simple, stupid -- is there any intuition from this model that would apply to anything else?  And the answer is really not, okay?  

So the question is how do we build these more complicated models given the cure of dimensionality?  The insight that made this field a lot better, in my opinion, was by Coleman, Miller and Page -- Page of yesterday fame.  And their idea was that instead of visualizing this in a deductive framework where people were utility maximizers, imagine the parties are stuck in a topology, and the topology is -- thanks -- is formed by preferences.  And so some preference locations are good for candidates and some preference locations are bad for candidates.  And the parties can move, but they’re moving according to some optimization technique, like a genetic algorithm or simulated kneeling [spelled phonetically] or something like that.  

What happens then?  It turns out that you get much more stable results and much more coherent results when the parties don’t know everything, because they can’t always just move to a better location.  They sometimes have a veil of ignorance that prevents them from doing it and they use polling to search.  I extend it a little bit by adding plausible voters, and we get nice cycles of attention and decay.  Mick Laver at NYU extended it even further and then matched it to European data by making the parties follow more interesting behavioral norms.  And Fowler and Laver ran a tournament of actual people in the social sciences to see if we could do better.  The neat thing about this, though, is that we took a relatively bad, simple model that did not have a great amount of reach.  We turned it into a computational model and with simple optimization techniques, we got behavior that matched up to real data, okay?  And the way that we knew we were right is by matching it to the data.  We didn’t know we were right up to that point.  And repeated trials against new data sources have actually borne out that it’s a good analogy for the way things are working.  

Last model -- this you have to think about for a minute.  It’s a tipping model in a currency game.  Two rules: probability one minus epsilon.  Think of epsilon as really, really small.  We’re going to basically flip a coin.  If it’s greater than -- if the probability in the population at time T -- so PT is how many have gold, okay?  There’s two currencies, gold and silver.  We’re going to flip a coin and we’re going to choose someone from the audience.  So all of you have gold or silver in your pockets, and the question is do you keep your gold or do you keep your silver, or do you switch to the majority currency?  Okay?  So PT is the majority currency.  So if I pick one of you at time T and I look at you, and gold is the majority currency, you’re going to switch to gold if you haven’t already, okay?  If you have gold already, you’re just going to stick where you are.  And vice versa, if I pick one of you and silver is dominant, and you have gold, you’re going to switch to silver.  If you already have silver, you’re going to stay where you are.  All right?  

Epsilon, though, is interesting.  With probability epsilon, you’re just going to randomly perturb yourself.  You’re going to switch, flip a coin again, and go to gold or silver and you don’t care about what everybody else is doing.  So the way this works is easy.  All of you pick at the beginning of the state of nature a currency, okay, uniform draw.  I pick one of you each time period.  You switch the majority one minus epsilon at the time, and epsilon at the time, you just randomly perturb.  What’s going to happen to this model over time?  Anybody have any guesses?  I called it a tipping model.  Let’s say we start off with mostly gold people, I pick the few of you that are silver.  You look around and say, “Oops, it’s gold.  I switch to gold.”  It seems like you would drive to everybody being gold if gold were the starting majority pretty fast, and that’s usually true.  

But what might happen instead?  Can you ever get back over to silver?  You can, or it wouldn’t be an interesting model.  What if these epsilons add up?  What if I had epsilon after epsilon after epsilon, let’s just pretend, and I drive enough people over to silver that suddenly silver is the majority?  I then get a nice cascade in the other direction, so it’s actually probable that over a long enough time period, I’m going to get one of these tips over into the other currency, okay?  So it’s a tiny, simple model.  Here’s the problem.  We could study these in a bunch of different ways.  Some ways are better than others.  We could run this with data, Monte Carlo experiment, our dependent variable would be regime shifts, our independent variables would be size of the population, and the mutation rate.  The easy question then if you’re a stats person is what kind of model would you run?  I’m going to skip it, but the answer is it’s a Poisson model, more or less.  We violate condition number one, but not two or three.  LOS doesn’t work.  

We could all do that, and when you look at the results, look at the bottom side, we’d get something like this.  You see that the population, we get a negative coefficient, which means that as the population gets bigger, we’re less likely to see one of these tips into a different regime.  Does that make sense to everybody?  And as your mutation rate gets larger, we’re more likely to see these tips.  We can all read that, it’s actually pretty comfortable, and you can do, you know, comparative work to see for different populations and different mutation rates what happens.  So that’s great.  That is the deductive result above it, which probably none of us can read and none of you want to read.  So one claim that I’d like to make about Monte Carlo work in computational models is we can always just do that, which is way easier to understand.  

The better thing, though, is we can extend it.  Skip that for a second.  We can easily add in a bunch of different things.  We can add in to our network model space, we can add communication, we can add adaptive behavior to our little currency game.  We can do all the things that we want to do in a nice constrained way because we can always run data.  You don’t, however, want to do, in my opinion, a keep it simple model because you want the output to do something you can do stats on.  One of the main advantages, for me at least, of computational work is that if you choose a level of analysis that matches the dependent variables you’re interested in, you can use all your statistical tools on the results of the computational model.  So you’re going to get results that are familiar to you, and if you have data, you can do much as was done yesterday with the flu problem that Epstein presented.  You can actually match it up with actual data to see if your model’s doing well or not.  I think that’s the way to go forward. 

And, in terms of interdisciplinarity, it’s easy for people with different types of research experience to get together.  People with really domain specific knowledge about clinical work or biology can actually tell you how to do the model, and the people that are the more modeling types can do the applied work of getting the model to work and doing the test of it statistically.  So the promise of computational, for me at least, is that it puts things in a framework so people can work together and you get results that everybody can look at and understand given the way that we’re all trained.  

The negatives, though, are that kitchen sink models don’t work and toy models don’t work, so I’m arguing for sort of a knife edge here, which is you have to choose a model at the right level.  And for me, the right level is a dependent variable that is produced that matches up with your empirical and applied concerns.  If you’re doing it -- too simple of a model, all of the heavy lifting of making the model analogous to what you’re really interested in is going on inside your head, which is a black box.  I just don’t care.  It’s never helpful to do that.  And on the other hand, if you make it too complex, you’re going to get a bad model.  It’s going to be garbage, there’s just too many parameters.  So the way you actually constrain these things is to get people with constraints from their practice areas, whether it’s clinical work or biology, to actually keep your model in check and to produce outputs at the right level analysis.  Thanks.

[applause]

Female Speaker: 

Okay, great.  Thanks, Scott.  So our second speaker for today is Dr. Mark Newman, and Mark is going to be speaking on the importance of networks.  And Mark is an Associate Professor of Physics and Complex Systems here at the University of Michigan, and he’s also a member of the external faculty of the Santa Fe Institute.  His research is on the structure and function of networks, particularly social and informational networks, and his research has investigated scientific co-authorship networks, citation networks, e-mail networks, friendship networks, and epidemiological contact networks, among others.  He also studies fundamental network properties, such as degree distributions, centrality measures, and assortive mixing.  So I’ll leave that to Mark.  Do you need to plug in your computer, or are you -- okay.

Mark Newman: 

Very good.  Hello, everyone.  Pleasure to be here.  Thank you to the organizers for inviting me.  It’s very nice to be here in Ann Arbor…  Oh, wait, over here.

Male Speaker: 

Mark, we need you to use the microphone [inaudible].

Mark Newman: 

Okay.  I hate these things.  I like walking around.  Stride around the stage.  Okay, I’ll stand here.  Yes, so I’m going to talk about social networks and how they affect the spread of disease.  I can’t resist starting off with this picture.  This is a map of the world.  You’re probably familiar with it.  And this is a slightly different map of the world.  In this one, the sizes of the countries have been changed to represent how many people live there.  So China and India are very large and the United States is relatively small and Canada has almost completely disappeared.  

[laughter]  

Sorry, Canadians.  So everybody get the idea of what this map is showing?  Okay, so now, take a look at this one.  This is a map of prevalence of HIV.  That large blob in the middle is Africa.  There’s the United States.  There’s Western Europe.  So, that’s a pretty devastating picture.  It’s a fairly forceful representation of the scale of the AIDS problem in Africa.  But it also tells you something else.  Why is it that all those people with HIV are in Africa?  Well, there’s a lot of reasons for that, of course, but one of them is, and this is sort of obvious, but you have to say it.  One of them is that they’re all catching HIV from each other, right?  There’s a network effect here that everybody who gets it has to be getting it from someone else, and one of the reasons why they’re all concentrated geographically in one area of the world is because everybody has to get it from someone else there.  

So, if you want to understand the distribution of disease, then you need to understand the patterns of how it’s being transmitted from one person to another.  Incidentally, if you’re interested in maps like this, we’ve made a lot of them, you can go to this Web site here, worldmapper.org.  We’ve made about 400 maps like this, they’re called cartograms, showing all sorts of things, many of them public health variables but not all of them, and I think that it’s an interesting way to visualize a lot of the data that we’re getting now about what’s happening all over the world in public health and in various other things.

So what I want to talk about today is social networks and their effect on the spread of disease in traditional modeling approaches in epidemiology.  Several speakers yesterday talked about this kind of thing.  You have these compartmental models where you divide up your population into different classes -- susceptible, infective, recovered and so forth.  And then, if you make certain assumptions, you can write down equations that describe how people move from the susceptible class and the infective class to recovered class, and so you can make some predictions about how a disease of interest will develop.  

You can make these models a lot more complicated.  You can add additional compartments, you can make the flow chart of how -- what changes are possible more sophisticated.  But they essentially all make the same important assumption, this assumption of full mixing or mass action, in which you assume that within any population group, the probability of two people having contact sufficient to transmit the disease is the same.  It doesn’t matter who the people are.  And this is a very convenient assumption, it allows us to write down equations and solve things and actually make predictions, and we’ve learned an awful lot by doing this kind of modeling, something we’ve been doing for decades.  

However, this assumption is obviously not correct, right.  It’s obviously not correct to assume that any two people have equal probability of contact sufficient to transmit the disease.  It’s certainly true that I am more likely to have contact with somebody who’s my friend then some random person who lives on the other side of town or the other side of the state.  So it’s clear that there are real networks of contacts between people that affect the spread of disease, and if you want to know how diseases spread, then you need to know about the structure of these networks.  If you don’t, then you’re missing out on one very important element that dictates how diseases spread through communities.

So, Carl Simon showed this picture yesterday and talked very briefly about contact networks.  This is the network he showed, which comes from data from the health study which -- this is a network of who dated whom in a US high school.  The pink and blue dots are the girls and the boys, and the lines between them are who’s dating whom.  So in the jargon of the field, the dots are nodes, the lines we call edges, and they represent some kind of contact.  It could be who’s dating whom.  If you’re interested in the spread of sexually transmitted diseases, for example, then this is probably the network you want to look at.  But it could be other kinds of contacts as well, physical proximity, so forth.  

Carl actually only showed this portion in the middle of the network yesterday, this sort of main, connected clump here, but there are in fact -- there are all these other people who are not connected to the main clump of the network.  That’s a pretty common pattern that you often see in these cases.  So there’s various people around the edge here who, you know, only dated one other person during their high school career, and you can certainly imagine that this could have implications.  If you’re thinking about the spread of sexually transmitted diseases, for example, there’s no way the disease can get from this sort of this main clump to these separate clumps over here because there’s simply no connection between them.  So, even at a very simple level, just looking at this picture of network, you can certainly see that there could be consequences here. 

Here’s another example, this is also data from a school.  This is a friendship network of a US high school.  This is data that came from Jim Moody, who’s at Duke University.  So there are nodes here representing students in the school, and there are edges representing who’s friends with whom.  And looking at this picture, you immediately see that there are these four big clumps in the network.  So there again, there’s something interesting going on here that you might not have known about if you hadn’t looked at this network.  Actually -- in actual fact, this is really two schools -- these two clumps up here are middle school and these two clumps at the bottom are the adjacent high school.  So there’s obviously some sort of division between the two.  One could imagine that an outbreak of flu in the middle school would kind of spread like wildfire through the middle school but might take a while to get to the other school ‘cause there’s some separation between the two.  

Within each of the two schools, you also see that there’s two clumps, this one and this one, and this one and this one down here.  Any guesses about what those are?  Sorry?  [laughs]  The jocks and geeks.  Good guess, nah.  Somebody said it.  It’s race, in fact.  The blue dots are the black kids and the yellow dots are the white kids.  So this particular -- so, this is not a big surprise to sociologists, of course.  This is something that’s well known, but it’s very forceful when you see it in a picture like this.  And again, you can imagine that that can have substantial outcomes of the way the community is divided in this particular case.  

So these are nice pictures, but they’re actually rather rare.  It’s often not the case that you can make a picture of the network.  So you can do some study, you can circulate questionnaires and ask people who’s dating whom, or who’s friends with whom.  You can certainly construct these networks, but one problem with this field is that very often it’s difficult to get a picture of what the network looks like.  There’s various computer programs that can draw your network for you, but most often, when you do it, you get something like this, which is essentially useless.  There’s not much you can tell from it.  This is just some hairball of nodes and lines.  You really can’t see anything that’s going on in this network.  

That doesn’t stop people from publishing pictures like this.  You see them very often.  People seem to think that they’re very pretty, but really they’re not much use.  So this one, you know, actually came from -- somebody actually published this, came from somebody’s paper.  Mark Vidal at Dana Farber likes to call these pictures ridiculograms --

[laughter] 

-- which I think is a pretty good name for them.  Actually, the definition, apparently, of a ridiculogram is that it should be visually stunning, it should be scientifically worthless, and it should be published in Science or Nature.  

[laughter] 

So there’s a practical issue here that you can collect the data but how can you tell what’s going on, because you can’t really make a picture of these things?  Well, so one thing you can do is you can look at statistics of the network and try and decide whether those statistics are correlated with epidemiological outcomes that you might care about.  So one very common thing that people look at, for example, is the so-called degree of nodes in a network.  The degree of a node is the number of connections it has, so how many friends you have if we’re talking about a friendship network.  And one of the things that you immediately realize is that people with high degree are far more likely to get infected than people with low degree.  If you’re this person over here and you have a lot of contacts, then you have a lot of opportunities to get infected, much more than this person over here.  So that could certainly be something to be correlated with outcomes that you care about. 

Here is one of the rare pictures of networks where you can actually see what’s going on.  That’s mostly because this particular network is very small by the standards of these network studies.  This is a network that I got from Valdis Krebs.  It’s -- it represents data from a study of the spread of TB, and what you immediately see by looking at this particular picture is that there are some of these stars, these hubs in the network, where there’s one person who has an awful lot of contacts with other people.  So that’s a person who has high degree, degree is the number of contacts you have, and there are typically a few of these people with high degree in many of these networks.  There are some people whose job brings them into contact with many people.  For example, if you’re, you know, the person who drives the bus or the person who sits on the reception desk or something like that.  There are some people who by the nature of the work that they do have contact with 10,000 people a day, or something like that.  So you can very well imagine that if this person here got sick, that it would be a bad thing.  They could spread it to a lot of other people.  

So, so let me just make that a little bit more concrete.  Well, so let me say briefly what the idea here is.  So certainly, it would be bad if this person here got sick.  They could spread it to a lot of people.  So if you had to think about it, your first guess might be that the important thing to worry about here would be the average degree of a node in the network.  What’s the average number of people that a person knows?  And if that’s high, then the disease is going to spread quickly, and if it’s low, it’s going to spread slowly.  It turns out, in fact, that that’s not quite right.  It turns out that the correct answer is it’s not the average degree that matters; it’s the average squared degree.  

Now, let me see if I can explain the reason for that.  So, so if this person here has got maybe, I don’t know, 100 friends or something like that.  So if they got sick, there’s 100 times more people they could spread it to then somebody who only has one friend.  But that’s not the whole story.  This person is also more likely to get sick in the first place because they have so many contacts.  They’re 100 times more likely to get the disease in the first place because there are 100 people they can catch it from, and 100 times more likely to pass it on.  So overall, they are 100 times 100, or 10,000 times more effective at spreading this disease than somebody who only has one friend.  So it’s not your degree that matters, it’s your degree squared.  And that means that these hubs -- I mean, you would think that these hubs would be important at all, but actually they’re even more important than you think they are because a person who has 1,000 contacts is a million times more effective at spreading the disease ‘cause it’s 1,000 times 1,000. 

So here are almost the only equations in my talk for those three of you who actually care about the mathematics, I thought I would just go through this quickly.  Suppose, for instance, you’re this person here who has degree five, five contacts.  And you catch the disease from one of your contacts, this person over here, so in comes the disease.  Then there are four other people left over that you could spread that disease from.  Obviously, you’re not going to spread it to the person you got it from ‘cause they already have it.  Or it can be sort of in general.  If your degree is K, then there are K minus one other people you could spread the disease from.  

Now, an important parameter in these kinds of models is what we call transmissibility, which is the probability of passing the disease on to a susceptible neighbor.  So when you have contact with someone sufficient to transmit the disease, you don’t necessarily actually transmit the disease.  Sometimes it happens and sometimes it doesn’t.  So T, the transmissibility, is the probability of that happening.  And then, on average, the number of people you’re going to spread the disease to is the number you could spread the disease to multiplied by the probability that it actually happens.  So it’s T times K minus one.  

The fundamental parameter in the mathematical study of the spread of disease is this parameter R0, the fundamental reproductive number.  That’s the number that says, on average, when somebody gets sick, how many other people do they pass the disease onto?  If they pass the disease, on average, onto more than one person, then the disease is going to spread, because at every sort of step in the chain, it spreads to more people.  If on average they pass it to less than one person, then the disease is going to die out because each person is passing it on to fewer and fewer people at each step of the chain. 

So you can calculate a value for this R0 now.  Basically, we just want to average this thing, T times K minus one over everyone in the network, but now, here’s the catch: you’re more likely to get the disease if you have more contacts.  So people with 100 contacts are 100 times as likely to get the disease as people with one contact.  So when you do this averaging, you have to weight by the degree of the person.  That’s this K sub I, that’s the degree of person I.  And then average over all people I, so that’s what this sum here is doing.  And if you just fiddle around with that for a while, you find that it’s equal to T, the transmissibility, times the average of K squared -- that’s the average of the degree squared -- minus the average of degree divided by the average of degree.  

So here’s this average of degree squared thing that I was talking about that comes in there.  And that affects this fundamental R0 parameter.  If that’s greater than one, then the disease is going to spread.  Or another way of saying that is that the transmissibility has to be greater than this number here, which sort of depends on the structure of the network for your -- this degree and degree squared.  It has to be greater than that number for the disease to spread.  If it’s less than that number, then the disease is spreading, there is some non-zero probability if the disease spreads, but it actually won’t become an epidemic.  It’ll just die out because the probability isn’t quite high enough to make it spread.  So this gives rise to this well-known epidemic threshold effect that it’s not true that the disease will always spread if there’s some non-zero chance of it being passed on.  Actually, it has to be non-zero and sufficiently large for the disease to spread, otherwise it’ll just die out.  

So, the interesting thing is that it depends on this average of K squared quantity, and if that average of K squared is very large, then this thing on the right is very small, meaning that the threshold value of the transmissibility is very small.  You don’t have to have a very high probability of transmission for the disease to spread.  Well, that happens, in some cases -- here’s a figure from a paper I did with Betsy Foxman and some collaborators a couple of years back.  This is for sexual contact networks, and it’s showing for a particular survey we looked at, it’s showing the lifetime number of partners that people in this survey had, and what it shows is essentially what I showed on that previous figure, that there are a few hubs in the network.  

Most of the people -- so this is a histogram -- most of the people are up here with small numbers of -- lifetime numbers of partners, two, three, four, something.  But there are a small number out here, you know, Don Giovanni with his 1,003 lovers, a small number of people out here with, you know, 1,000 lifetime sex partners, and those people are the hubs in the network who you have to worry about.  And because of those people, and because the thing that you care about is the average of the degree squared, that average of degree squared becomes very large because of these few hubs out here in the tail, and that means that the epidemic threshold becomes very low.  The chances of the disease spreading are very good, even if the probability of transmission on any particular sex act are very small.  So this is kind of worrying when you see these hubs in the network, you realize that there’s something here that you should worry about. 

So, so that’s sort of interesting mathematics, but maybe I can sort of give you a flavor for, sort of in practical terms, why that’s happening.  This is a figure from some Steve Borgatti, which shows the spread of SARS in the outbreak in Singapore in 2003.  So they have very good data for their outbreak, and they know sort of all the cases.  Well, they know all the cases that they know, I guess.  There could be some other ones they don’t know, but all the cases they know, they know who got the infection from whom.  This is the first case they know about, person number one here.  And the interesting thing is that this person was a hub.  They spread it to a lot of other people.  They actually invented their own word in the case of SARS; they called them superspreaders.  But it’s just the same thing that other people called hubs.  

This person, unfortunately, was a hub and spread it to a lot of people, but look, almost all of those people didn’t spread it to anybody else.  Or some of them spread it to like one other person, and then it died out.  Most people in the network are not hubs.  Almost all of them, you know, 99 percent of them are not hubs, pass it on to one other person or pass it on to no other people.  A very small fraction are hubs, but it only has to be a small fraction.  See, this person here, well, most of the people they passed it on to, it went nowhere, but one of the people they passed it on to was another hub.  And that person spread it to a lot of people, most of them it went nowhere, except that one of them was another hub, number 35 there, and that person spread it to a lot of people, and so forth.  So you can see that what’s happening is you have this very small fraction of people in the network who are hubs, but nonetheless it’s enough because you’re just encountering one of them just often enough that gives the disease a big boost and keeps it alive.  So they’re having a big effect on the spread of the disease even though they’re very small in number. 

Okay, well, so this is a sort of a nice general idea.  And there are various other similar things you can talk about.  You can say things along the lines of, “If my network has this kind of structure, these kinds of things are going to happen.”  But one could also very reasonably ask, “Well, can I make this more concrete?  I actually want to make some predictions about the spread of a particular disease.  Can I also do that using these kinds of network techniques?”  So I want to tell you -- so the answer is yes, of course, otherwise I wouldn’t be talking about this.  I want to tell you about a few example studies, some of them are things that I’ve worked on, some of them are other people’s work, that show how you can apply these kinds of network ideas to understanding the spread of particular diseases.  

And the first one I want to talk about is a study I did with Lauren Meyers from UT Austin, and Mike Martin and Stephanie Schrag from CDC, and it was a study of mycoplasma pneumoniae, a particular outbreak of mycoplasma pneumoniae in a hospital in Emerson, Indiana, and Evansville, Indiana, and…  So this is a fairly mild form of pneumonia.  Of course, mycoplasma is sort of colloquially called walking pneumonia, you may have heard of it under that name.  It’s the sort of thing that’s endemic in the population all the time, and for most people doesn’t cause any serious health problems.  For people who are fit and healthy, it’s not a big issue, but if you’re very old, very young, sick, otherwise immune compromised, then it can be a serious issue.  So people care about it, for example, in hospitals.  

So Mike and Stephanie studied this particular outbreak in this hospital in Evansville and this is a particularly good example because in this case we have very good data on what the structure of the network is.  So, let’s see, this is a hospital and it has a bunch of patients in it, and we know which ward each patient was on.  And then it has a bunch of caregivers, and each of them is assigned to specific wards and we know which wards they’re assigned to.  Sometimes they work on one particular ward, sometimes they work on several different wards.  But we have all of those details, so we pretty much know the whole contact network of who could have come into contact with whom in this hospital.  That’s an unusual situation.  

It’s not something you usually know about in most communities.  But this is a good example to start off with because we have pretty much all the data that you would like to know in order to make a comprehensive network model of how this infection might spread through this hospital.  So the kind of picture you should have in your head -- this is just a sketch, of course, this is not the real network -- is that you have a bunch of wards, and each of them has a bunch of patients in here, and then there are caregivers, some of whom just work in one ward and some of whom work in several different wards.  So that’s the sort of network picture you have. 

So what we were able to do is take this network and make a model of this infection spreading over the network.  There are still some things that are missing, and the main things that are missing here are these transmissibility parameters.  We don’t know what the probability of transmission is of this disease from one person to another person when they have contact.  So what you do is you put those parameters in and you guess some values and you just sort of fiddle around with them.  And, you know, there are fairly rigorous ways of doing this in order to try and reproduce something similar to the actual outbreak that was observed in the hospital, for which we also have good data because Mike and Stephanie collected very comprehensive data.  They tested everybody who was in the hospital for mycoplasma during the outbreak, so they know who got infected and who didn’t.  

And what we find is an interesting thing.  We find, which is sort of what this figure down here is showing, we find that in order to fit the model to that outbreak that was observed, it must be the case that two things are true.  First, that the probability of transmission from an infected patient to an infected caregiver is pretty low.  It was about 20 percent.  But conversely, if a caregiver gets infected, the probability of transmission to one of their patients is extremely high, in fact, not measurably different from 100 percent up here.  So that’s kind of interesting because usually people don’t even worry about the caregivers, right?  Because the caregivers are mostly young, healthy people for whom -- they’re probably not even going to get any symptoms, they probably never even know that they’re infected.  But what it’s telling you is actually the caregivers are pretty much the only people you should be worrying about.  They’re the ones who are spreading the disease.  The probability of spreading from the patients is actually pretty small.  From the caregivers, it’s extremely high.  

So, the standard strategies for dealing with outbreaks like this are -- well, there are two of them.  There’s patient cohorting, which means that you take all the infected patients and you stick them in a room together and tell them to fight it out.  But that’s well known not to be a very effective strategy for mycoplasma because -- because it has rather a long incubation period, which means that there’s probably a lot of people who are infected who you don’t know they’re infected yet.  So the other common strategy is chemoprophylaxis for the patients.  You give azithromycin to all of the patients, even the ones who are not infected, just in the hope that it will prevent them from getting the disease.  

What this is telling you is that you’re probably doing the wrong thing.  Actually, you should be giving the antibiotics to the caregivers.  They’re not -- you know, you think that you should be giving them to the patients because they’re the ones that are at risk if they get infected.  But actually that’s not what’s going to stop the spread of the disease.  If you have a sort of public health outlook on this, you should be giving it to the caregivers.  They probably never even know that they’re sick, but nonetheless, if they do get sick, it’s a disaster, because there’s 100 percent chance that they’re going to infect all the people in their ward.  

So we made some recommendations based on the outcome of this model.  I actually don’t know if those recommendations have been implemented yet.  These things take rather a long time to work their way through the bureaucracy.  So this is a nice example of the sort of thing that you can do, but as I say, it’s also rather rare that you have this kind of data for an outbreak.  In this case, we knew the entire structure of the network of contacts between people, and you don’t usually know that.  In fact, the common type of thing that one wants to do is ask about how an infection is going to spread through an entire city or an entire country.  And if that’s what you want to know, then it’s obvious that you can’t get the whole network. Obviously, you can’t find the social network of everybody in the whole country, so what can you do?  Can you still apply these kinds of ideas to those kinds of problems?  Well, yes you can, but you have to, you know, sort of make some additional leaps in order to do it. 

There are various things that you can do, but perhaps the commonest one is to do a sort of combination of data gathering and some kind of computer simulation to fill in the gaps, the bits that you don’t know.  So I’ll give you an example of that kind of study as well. This is from some work I and my collaborators did on SARS, and this was a study where we tried to predict how SARS would spread through the city of Vancouver, British Columbia, which is actually one of the two Canadian cities that was affected by SARS in the outbreak in 2003. 

So, we don’t know the whole social network of the city of Vancouver, of course.  But what we did have was pretty good demographic data for a lot of things in the city.  So what we tried to do is make up a network that matches the things that we know about the demographics of the city.  So at the simplest level, for example, you could look at the degrees of the nodes in the network, how many contacts people tend to have.  And then you could make a network that has the right degrees of nodes in it, okay?  But in this particular case, actually, we can do something a lot more sophisticated.  

We made quite a complicated model.  We had data on the sizes of houses, we had data on people’s occupations, we had data on ages of children and where they went to school and things like that.  So you can make up quite a complicated network in which the people are divided into households, and people from individual households go to various locations -- kids go to school.  The schools themselves are modeled as being divided up into classrooms with a bunch of kids of a given age in them, and teachers and so forth.  So you can put in quite a lot of detail there. 

You’re not looking at the real network because we don’t know the real network.  What we’re doing is we’re taking what we do know about the real thing and then making some simulation to try and guess what the structure of the network is.  Making up a network that seems plausible given what we know about it.  In this particular case, we knew sizes of households, ages, where people work, where they go to school, the sizes of school classrooms, so forth.  So we had quite a lot of data about the city.  So this is a typical approach that people take.  It’s a combination of computer simulation to generate a reasonable network based on actual data, demographic data that you measured about the population of interest.  

So here’s an example of the sort of things that you can get out of these kinds of simulations.  So on the horizontal axis here, I have this T parameter, which is again the transmissibility.  That’s the probability that the disease gets transmitted if a susceptible person comes into contact with an infective person.  We don’t know what that is for SARS, but what we can say is how we expect the outbreak to behave as a function of that parameter.  If T is very small, a very small probability of transmission, then we’re below that epidemic threshold.  Even though the probability of transmission is non-zero, the disease still won’t spread.  There’ll just be a few cases and then it’ll fizzle out.  So that’s what you’re seeing in this left-hand portion.  There’s a few cases, you know, three, four, five, but then the disease dies out.  

Here’s the epidemic threshold, this gap in the middle, and beyond that, you get a large outbreak that affects some fraction of the population, so the axis here is the fraction of the population infected by the outbreak.  So over here it’s just a few people, over here it’s 20 percent or 70 percent or something.  And you see as the transmissibility goes up exactly as you would expect, the number of people infected in the outbreak rises.  There are several different curves here.  The blue one, actually, is the one that came from our detailed model of Vancouver.  The other two are two other simple models of spread of disease on networks that people have studied in the literature.  This green one down here is a so-called power law network, sometimes called a scale-free network, something that people have made a lot of fuss about in the recent networks literature.  It actually turns out not to be a good model in this particular case.  

This -- this purple one up here is actually a pretty simple model.  It’s called a Poisson random graph, which turns out in this particular case to mimic the real world data pretty well.  So maybe that’s telling us that in this particular case, we could have cut out a lot of the complexity of the model and modeled it using this much simpler one.  Trouble is, in order to come to that conclusion, you had to do the calculation on the more complex network to begin with in order to know that you could do that.  So I’m not sure really how useful a conclusion that is. 

You can also work out various other things.  This is something that people were interested in, in particular, in the case of SARS.  It’s the question of if there is an outbreak of the disease, and I see it going on, and I see have an outbreak of the disease, what’s the chance that this is going to become a large scale epidemic?  Sometimes if you get an outbreak of disease, it’ll just fizzle out and die away, and sometimes it’ll go on to infect hundreds or thousands of people.  And it turns out that it depends on how big an outbreak you already saw.  You know, if you’ve already got 100 people infected, that’s it.  It’s probably hopeless, there’s nothing you can do to control the disease.  If you’ve only got one or two people infected, then it may be that you can keep it under wraps and it won’t get out.  And that’s what this figure is showing.  For various different values of this R0 parameter, which is sort of how virulent the disease is, then it tells you what’s the probability that you’re going to have a large scale epidemic, given that you’ve already seen five cases or ten cases or 15 cases, and the more you’ve seen, the worse it is.  If you’ve seen a lot of cases already, then it’s very unlikely that you’re going to be okay.  There’s just going to be a big outbreak.

So this is something that you would like to know if you have some surveillance operation which can spot outbreaks as they begin to happen, and you can see that we have a small number of -- a cluster of cases of this disease.  Depending on how many there are in that cluster, you may be able to do something to control it and prevent a large-scale outbreak. This is a kind of similar thing.  If you just have one initial patient bringing this disease into your city, what’s their degree?  If their degree is very high, then you’re very likely to get a large-scale outbreak.  If their degree is relatively low, you’re not. 

This was illustrated, in fact, in the two outbreaks that happened in Canada.  There was one in Toronto and one in Vancouver.  The one in Vancouver was a businessman who returned from a business trip to Hong Kong.  He returned -- he was married but childless. He returned to his empty house because his wife wasn’t there at the moment and he died in his house, and that was it.  End of outbreak.  The one in Toronto, a woman returned from a trip and she was sort of the matriarch of a very large extended Chinese family. There were a dozen people living in her house with her.  She returned from her trip, gave the infection to several members of her family, and from there it took off and became a large scale epidemic.  Well, it eventually affected, I think, about 150 people in Toronto.  So the number of contacts that initial person has can make quite a big difference. 

So you can take these kinds of things a lot further.  This is one example of quite a well-known study called EpiSim, so this is not work that I did, this is stuff by Steve Eubank and his collaborators at Virginia Tech.  And they did this quite well known study of Portland, Oregon, in which they did a simulation, a very detailed simulation of Portland in which they have all the roads and all the cars moving about on the roads and the pedestrians moving about and people getting up and going to work and taking their children to school, and it’s a very detailed version.  Beside this thing, our own version of Vancouver pales in comparison.  This thing is a very large scale simulation, very detailed reconstruction of the social network of this one city, which you can use to make quite detailed predictions about the spread of disease, including where the most infections will be and how many days after the outbreak there’ll be infections in what particular parts of the city and so forth.  So they’ve taken this to really great lengths, this kind of detailed microsimulation of the spread of disease over social networks.

So the other thing I wanted to talk about was time-varying networks.  So an important issue here that I’ve sort of glossed over is that these networks are not really static.  I’ve talked about them as if the network just sits there and the disease spreads over it. Sometimes, actually, that is, roughly speaking, the case.  If the network is changing slowly and the disease is moving quickly, that’s a good approximation.  But in many cases, that’s not the case.

And one case where it’s not is in the spread of, for example, HIV, where you’re talking about a disease which spreads through a population over a period of years or decades, and it’s spreading over sexual contact networks, and those networks are certainly changing substantially on the period of years, and so you have to take those changes into account.

So here is -- I wanted to tell you a little bit about a project I did with Betsy Foxman and some other collaborators on trying to understand how these networks change structure over time.  So here we were interested in HIV and -- so we were looking at sexual contact networks, and we analyzed data from a survey, a telephone survey conducted in Seattle, Washington.  So I should point out that I was not involved in actually conducting the survey.  It was designed and implemented by Betsy and by her collaborators.  My contribution here was analyzing the data.  

But, so the survey involved dialing random telephone numbers.  So a computer generates random telephone numbers and dials them for you.  In this particular case, 37,000 of them, of whom, you know, a lot of them you just get an answering machine or it’s somebody’s business or something like that.  But about 8,000 of them actually answered the phone and were just people’s households.  About 2,000 of those met eligibility criteria, meaning they were over 18 and various other things.  And of those, about a thousand actually agreed to participate in the survey.  So starting from 37,000 phone calls, you got about 1,000 people who agreed to answer questions in this survey where you ask them a bunch of detailed questions about their private lives.  And you learn a lot of interesting things by doing this kind of stuff.  It’s amazing what people will tell you over the telephone.  

[laughter] 

So, here’s just a few sort of summary statistics.  We learned that the median length of a sexual partnership in this survey was 92 days, about three months.  So this network is definitely changing over the time scale on which HIV is spreading through the population, no question.  The median gap between partnerships is about 120 days, about four months.  So we’re going three months on, four months off, three months on, four months off.  

[laughter] 

Male Speaker:

That’s sleepless in Seattle. 

[laughter]

Mark Newman:

Right. 

[laughter]  

Thank you.  I wish I’d thought of that.  Here’s an interesting one.  About a quarter of the partnerships actually overlapped with the previous partnership of the same person.  They were sleeping with two people at the same time.  That’s a big issue if you’re concerned about the spread of sexually transmitted diseases.  Many of these diseases, including HIV, are primarily infectious during the first few weeks that you have the infection.  HIV is quite infective in the primary -- so-called primary stage before seroconversion, about the first eight weeks or so, and a lot less infective after that.  So you care about whether the person is sleeping with two different people during that period.  If you wait until after the eight weeks before you have your next partnership, that enormously reduces the probability of transmission. 

So this concurrency is an issue.  Here’s an interesting one.  The median length of these overlaps is 400 days, over a year.  So some people are, you know, sleeping with the same two people for more than a year.  Actually, some of them it was like for more than ten years.  You know, this François Mitterand and his mistress, or something like that.

Here’s some pictures of the kinds of patterns of relationships that people had in this study.  So each of these boxes here is one person in the study, and the lines represent as a function of time horizontally the periods over which they had each of their relationships. 

So for example, this person here had a bunch of short relationships and then sort of settled down with one person.  So maybe they were sort of looking around and then they finally found a person they liked and they settled down.  This person here was in a steady relationship, and then they had a fling!  Look, right there.  

[laughter]  

That’s a one-night stand or something.  Here’s another person who’s a bit like person A.  They were, like, trying out a bunch of different people and then sort of settled down with one person.  But the trying out sort of overlapped with the settling down.  Maybe they hadn’t quite decided on this person here yet.  So you know, there again you’ve got some concurrency.  That could be an issue.  Here’s somebody who sort of switched from one person to another person, they had a little bit of experimentation going on the middle.  This person, you know, was in a relationship for a while and then obviously things were not going so well towards the end.  

[laughter]  

So these are common patterns. We see these same kinds of patterns.  And obviously you can imagine that these patterns could affect the spread of disease.  Again, you’re going to need to know about these things to understand what’s going on here.  This is distribution of length of partnerships.  Most partnerships are fairly small but there’s a small number out here in the tail around thousands of days, this is 20 or 30 years.  My parents are over there on the curtain somewhere.  This is the distribution of lengths of gaps, and some of the gaps, you’ll see, are negative.  That means they’re overlapping a bit, as I said before.  And there’s some correlates with demographic parameters like age, people of different ages behave somewhat differently. 

So the story here basically is that there’s a lot of interesting time structure in these data, and that’s clearly going to affect the spread of HIV or other sexually transmitted diseases. The obvious next step in a study like this would be to then make a model of the kind that I talked about before, and model the spread of HIV.  We haven’t gotten onto that stage yet, we’ve just analyzed the data, but that’s clearly the sort of thing that needs to be done next, and we are thinking about that.  Before I finish, I just want to tell you one last example where somebody has actually done that kind of thing, taken time, ordered data, and used it to make an actual model of the spread of disease.  This is not work that I’ve done, this is from a recent paper in PNAS by Vittoria Colizza and her collaborators, and this was on the effect of airline travel on the spread of influenza.  

If you’re interested in the international spread of disease, then it’s unquestionable that airline travel is the primary vector for the international spread of disease.  Airplanes are perfect vectors for the spread of disease.  They’re just these little flying tubes of germs hurtling at hundreds of miles an hour from one country to another.  You get all these people together, you put them in a confined space for ten hours, and you move them to a new country.  It’s crazy.  It also happens to be an example where we have really good data for what’s going on. 

I just want to quickly show you this little movie here of the flights of airplanes.  So this is real data for actual airplanes made by this guy Aaron, and what this is showing is flights of airplanes.  The dots are airplanes flying around the United States, and there’s not very many on the picture right at the moment because it’s nighttime.  You can see a few red eyes coming in there from the left.  But after a while, you get the sun coming up on the eastern seaboard and you start to see airplanes taking off and flying over to the west, and then you start to see the sun coming up in the west, and if you wait long enough, you’ll also see the sun coming up in Hawaii, down there.  

So we have complete data on exactly where the airplanes are, where they’re coming from, where they’re going to, how many people are on them.  Well, I don’t have the data but these people did.  So they made a very comprehensive model of the spread of influenza, with all of these airports in it and a model of mixing within the towns where the airports are.  And this allows them to make explicit predictions of the spread of disease.  This is predictions for a putative outbreak of influenza starting in Hanoi and initially spreading to various other countries in Southeast Asia, and then you go on in time a little bit more and you see that it’s spread to some countries in Western Europe, it’s spread to Russia, it’s spread to India.  

And they can make very specific predictions about exactly when they expect disease to get to particular places because they know the way it’s getting there is it’s traveling on these airplanes, and they know exactly when the airplanes are taking off.  So they can make very specific predictions.  They can even go down to the level of individual cities and say how many cases they expect to see in individual cities at specific times.  So I’m out of time there, I should stop talking.  I hope I’ve convinced you that there are a variety of interesting questions here, many of which have not been tackled yet.  It’s early days yet.  There are many things still to be done.  I do want to thank my various collaborators here and also people who paid us money, and I guess there’ll be a question and answer session later.  I’d also be happy to answer questions privately, and thanks for your attention.

[applause]

Female Speaker:

Okay, so we’re going to have a 15-minute break now, and so we’ll start back up at 10:45 and we’ll have another talk and then our discussion session.

[low audio] 

Female Speaker:

-- and she will be presenting the view from economics.  And Jasmina is a Professor of Economics in the Department of Economics at Simon Fraser University, and she is also the director of the Center for Research in Adaptive Behavior in Economics at Simon Fraser.  She teaches macroeconomic theory, monetary theory, and computational economics, and her research interests focus on adaptive behavior of economic agents and experimental economics.  She is currently working on an evolutionary model of currency crisis, comparison of performance of adaptive and rational agents, and tacit coordination games, among other projects.  Welcome, Jasmina.

Jasmina Arifovic:

I hope they turned the -- uh-huh, okay.  Okay, so as the title of my talk points out, I’ll be giving today a view from economics on -- basically related to complex systems, first.  And then I’ll try towards the end of the talk to see whether -- and find out, sort of, ways in which these things and the work that I’m doing can actually be implemented in studies of population health. 

So the talk is going to consist of basically motivation for the kind of work that myself and a number of other economists are doing.  And then I’m going to try to tie it into a definition of complex as basically -- as the work that is -- that belongs to the category of complex systems.  I’m going to illustrate the type of work that’s been done using two basic examples that are pretty different.  One is in terms of the coordination games, and the other will be about behavior of exchange rates and currency crisis.  And in my conclusions, I’m going to basically, again, relate the work and the modeling strategies to the possibilities of using it in studies of population health.

Now, before I get into the actual type of work that I’m doing, I wanted to emphasize, first of all, what it is that we actually mean by a standard economic model.  We’ve heard quite a bit about why we don’t like or why neoclassical economics does not work, and so on.  I just wanted to give a quick overview of actually what we mean by a theoretical economic model. 

So basically, the ingredients of any of these models would be that we have a certain, well-defined specified economic environment.  We have agents, and agents are defined by the preferences, by their utilities, profits, and they also are defined explicitly by the beliefs that they hold about the environment in which they are operating.  And we are explicit also about the knowledge and information that these people possess.  This is going to turn out to be an important part of my talk today, talking about different ways of modeling these beliefs, and how that affects the outcomes. 

So what do we do in an economic model?  Well, we look at these agents with set preferences and set beliefs, and we put the constraints on their basically optimization problem that come from the environment.  And then we let these agents solve optimization problem that can sometimes be quite complicated, depending on, again, the type of the environment.  We derive their decisions out of this constrained optimization problem, we bring all these decisions together, and then we compute what we call an equilibrium outcome.  So this would be an outcome of this model where everybody at that point is doing the best they can, given what everybody else is doing, and given the constraints.  So, whichever way you look at this, whatever kind of an economic model you want to discuss, it’s going to contain this -- these elements.  

Now -- so, in this equilibrium, what this concept basically assumes -- what it is about is about the fact that everybody, again, is doing the best they can, given the constrained environment in which they operate.  And so basically, this solution to our problem is always to be -- going to be a combination of what we call best responses.  So, in this sort of a situation, nobody can do better than they’re currently doing if they tried to do something else, except for this optimal decision. 

Okay, so two types of environments that we usually study could be basically broadly divided into something that we call market behavior, where agents do not know that they actually can affect the outcomes of what is going on in the environment.  And then the other types of models where there is -- this is what we call strategic behavior, where agents are explicitly aware of the type of effect that their own actions have on other players, on other participants in the model, or on the environment in general.  But both of them would still have the same sort of a definition of an equilibrium.  Again, the best you can do in the given environment.  These models do provide us with the ability to make some predictions about the behavior of our agents, and that’s, again, what we call equilibrium outcomes of these models. 

Now, broadly speaking, we have micromodels and macromodels.  Micromodels do look at a single market usually and treat everything else as constant.  Macromodels in general look across the entire economy and look at how behavior in one market affects the behavior in some other market in the economy.  

Now, underlying assumptions related to the beliefs and behavior of our agents are what we call rational behavior, and they -- what is -- basically what we mean by this is that these agents have all usually a complete knowledge of the environment, or if they don’t, it is up to some basically stochastic error, and they also contain and have enormous computational ability.  So in some more complicated models, these people are able to solve very complicated dynamic programming models and problems over infinite horizons.  They also have great calculation ability, and basically, they have knowledge of the environment that is actually larger than knowledge that any of us as modelers do have.  So what we impute with these agents is a complete knowledge of the environment while we as modelers do not really know the exact way in which, you know, our economies look like.

So there’s a lot of basically computational ability and expertise, and these models in general can serve as a useful benchmark, but they also have a -- there is also quite a bit of problems with them, as we have already heard yesterday.  And, you know, if you look at what any of the sciences is all about, at the end of the day it is about trying to explain, and social science is to explain behavior of people; in our case, behavior of economic agents and how that affects economic outcomes in various areas.

So with these equilibrium models, what has happened is that they failed -- they basically failed to capture a lot of features that we observe in real world in terms of economic time series or in terms, say, of a lot of evidence that comes from the experiments with human subjects.  And thus, they basically failed to capture all the -- all the dynamics that’s observed in the real world. 

Now, these problems, conceptually, where do they come from?  Well, again, as I’ve already mentioned, agents know more than even our -- our theorists who are modeling these agents know, and in some sense, everybody in these models is too perfect for any real dynamics to take place.  And by which I mean the following: say you’re an investor in one of these theoretical asset pricing models, and there is a bunch of other investors who have to make their portfolio decisions about where and how to invest.  Well, in our equilibrium models, our agents would make this optimal portfolio decision right at the beginning of time.  They would formulate their optimal portfolios, do the necessary trading, investment, buy and sell, and that would be it for the rest of time, for the rest of history in a model.  And this is because they’ve taken everything into account, including the features of the stochastic process that might be governing dividends or other things in the model.  

They do know the probability distributions of things as well, right?  They will not know the actual realizations -- realization, but they do know the moments of these distributions.  As a result, one of these classical asset pricing models, say, would never be able to basically predict or explain the features of the actual financial markets that we observe where there is excess volatility and excess amount of trading that takes place all the time.  And again, this is because they are too smart.  They don’t need this, and the outcome is basically, very kind of a static behavior, even though we try to put in the dynamic component through putting in sort of an infinite number of periods through which they live. 

So where the departures are going to be is to say that these agents, in fact, are not so rational as in our neoclassical theory, and that in fact, that they’re boundedly rational.  Now, that departure means that basically we are getting many free, you know, degrees of freedom here, because we can assume various things about how bounded these agents are.  They can be just slightly bounded, you kno7w, they just can have some slight imperfectness in terms of their calculation ability and so on.  And we can go all the way down to assuming that they’re very kind of dumb and do not have much of -- much to say about -- about the appropriate behavior.  

So we have to -- the way that I approach this modeling is through -- I would call for this talk, evolutionary adaptation, and that basically is a very simple algorithm based on the following: agents form different beliefs, they have different strategies, and over time, in response to the environment and the payoffs that these strategies are earning, they adapt, and they do this by adopting the strategies that belong to more successful agents, if they get to see them, and through occasional experimentation.  So it’s very -- fairly simple, but as you will see, it does generate a sort of powerful dynamics.  And even though these agents are not going to be very smart, it turns out that in aggregate, a lot of -- many times, in fact, they do behave as if they had all those -- all the computational ability and knowledge of rational agents, even though it’s not intentional in their case.

Why use these, and how -- what are the criteria to -- which we can use to say, “This is better than some other way of modeling bounded with rational behavior?”  Well, in my work, what I’ve done is always tried to basically compare the behavior generated in these models to the behavior that’s observed in real world data on macro or micro, basically empirical evidence, as well as on the data that is generated in the experiments with human subjects.  

I should probably here mention just briefly what we mean by experiments with human subjects, since the audience is probably not familiar.  So one of our ways of generating evidence to test our hypothesis and our models is to basically put our, what we call subjects, basically human subjects, into usually a lab.  Put them in front of the terminals, and give them instructions on how to behave in a given -- in a given game.  And the instructions usually describe a certain model that we are interested in.  The subjects participate as actually our economic agents, and they make these decisions over time. And to make it really sort of be worth their while and their time, we pay them.  And the payments are, of course, related to how well they do in these economies.

There’s a long -- it’s a lot -- it’s a huge discipline now.  There is lots of things to say about it, whether it’s good to do it or not, but anyways, this is one of the ways in which we can actually generate data and where we have more control over what is going on than if we just take a data set that’s been collected from macroeconomic time series, or some other second source of information.  Okay, so that’s the adaptive behavior I’ll be talking about.  I will still have my environment, and agents will have preferences, but they will not be rational, right?  They will have this sort of adaptive behavior in there.  And so we’re going to put them in different situations to see what is happening, whether these situations generate interesting behavior, by which I mean whether, in fact, this behavior corresponds better to what we observe in, again, real world.  

And to -- I was thinking about this definition of complexity, and so I’m going to use some of what Carl said yesterday.  One of the things he mentioned was homogeneity versus heterogeneity of agents, and their behavior.  Well, our equilibrium models characterized by homogeneous agents, they basically always do the same because if you know it all, then you’re all going to do the same thing because there is usually one optimal thing to do.  

And so our agents in our models are going to be heterogeneous.  There will be some other dynamics, and these dynamics are going to be different than equilibrium dynamics.  He also mentioned random matching.  For the time being, in the models that I’m working with, there is just random matching but it’s easy to add a structure, some sort of a network, and it’s not far from -- these models do have ability of incorporating some other sort of a structure in them, and then, in addition, no feedback as a characteristic of classical economics, neoclassical.  There will be learning and adaptation.  And this learning and adaptation is going to result in changes in agents’ decisions and what they do in these environments.  They will affect environment and in turn the environment is going to affect their payoffs.  And then again, the way they change their behavior.  So there is -- we call these self-referential systems because there is this interaction between the agents and the environment.  By environment, I don’t mean just the physical environment in which they’re operating, but also other agents in the economy.  Everybody’s decision affects everybody else’s payoffs and behavior.

And as the last one here, and I think Scott also mentioned this one as an emergent phenomenon, basically we are going to see that there will be non-trivial relationships generated between micro and macro phenomena.  So agents will be doing something at the micro level, and unintentionally, this is going to create something different which we can call emergent phenomenon at the macro level.  Okay, so again, what -- another thing that Scott talked about, and it is again about complex systems and these emergent phenomena, there will be a difference between micro, basically, individual behavior, and what we will observe at the macro -- at the macro level.

And a lot of times, in fact, the behavior, as I’ve mentioned already, that is quite simplistic in the way it’s -- it’s modeled is going to result in the outcomes that are quite close to the optimum outcomes of some sort of a equilibrium model.  However, the dynamics are not going to be static, as the equilibrium outcomes would predict in this same environments.  It’s also going to be bottom up approach modeling.  It is what is called agent-based modeling, and I’m going to talk about explanation versus prediction, what we can do about these models, and how much we have succeeded so far.  Another thing I will emphasize here, and this is always what I have to worry about because I always have to stand up and usually defend, you know, the things I’m doing, is just to insist on empirical validity.

And why is this important?  It is important because that is, you know, a good way of saying, “This approach of modeling is better than the standard neoclassical way of modeling things.  I can explain more of the -- what goes on in real world than you guys can, and it makes -- also makes sense.”  It’s all based -- because it’s a sort of evolutionary dynamics, it’s all based on the exactly impact of the environment on the payoffs, and that affects subsequently on the behavior of these agents.  And the second thing I always -- is, which I think is also very important in these studies, is robustness.  What I mean by this is repetition of the same, you know, things under different conditions, examination of how that is -- how that affects the outcomes, how the changes in the parameter values of the model, in the number of agents in the model and so on, affects the outcomes.  So that once we make some claims about what the model does, we have, basically, the backup of all these robustness tests that we perform.

Okay, so I’m going to talk about -- these are general, you know, many applications of this sort of approach.  Game theoretic, coordination games, signaling games -- you can assume there’s some applications in endogenous growth and monetary policy, evolution of organizations, design of trading institutions, international finance, and others.  I’m going to talk here about two applications which I think -- hope will illustrate some of the features and potential of this approach that might be useful for the types of things that people in the audience work on, and even though the topic -- the topics themselves are certainly far away from any sort of -- any of the topics in the sort of area of population health.  And I chose two applications, one is basically -- two different ones, coordination game, and the other will be related to the behavior of the exchange rates and currency crisis.  And the environments are going to be different, but of course, there will be common elements of the two environments as well. 

Okay, so here is a -- what we call a team production game, and there’s going to be N players in this game.  The best way to think about this game is take an example of a few people who have to work on collecting survey data, and they have to spend a certain amount of time, or hours, doing this.  Now, basically, the -- nobody wants to -- and they’re -- in all of this, they’d represent different, basically -- they’re collecting different parts of the data set such that at the end of the day, the person that collected the smallest number of data points is going to -- or elements is going to determine the size of the total data set, which serves some useful role.  

So, what is -- what happens here now in this team production game?  Well, here are the payoffs.  Hmm.  The payoffs of our players and -- so basically they depend on -- there are two [inaudible], A, [inaudible], and zero.  E minimum is the minimum effort that person in this group of N players puts in, and then the I is the individual players’ effort.  So basically, the random part of the whole equation is determined by the person who works least.  While your own costs are the costs that you incur as costs of your own time.  So basically, what happens here with rational agents would be that nobody wants to work more than what a minimum effort person does, right?  Because you’re just going to incur costs while the payoff on the other side is going to be determined by this minimum time put into that.  So there is a tenden -- there is a strong force that pulls everybody back -- you know, to sort of a small -- to the lowest common denominator, to the lowest amount of effort that can be put in, because you’re going to be worse off by working more than somebody who works least.  

However, overall, the game is structured in such a way that if everybody worked -- put in the highest possible level of effort, that’s going to be what we call payoff dominant for every player.  In other words, that’s going to be a situation that is better for everybody.  And this is the game that we call usually a game of strategic uncertainty, and the uncertainty is exactly in this thing.  How much are other people in the group going to work?  Usually there is an assumption that you cannot directly observe the hours that other people put in.  And it’s a very common situation for many different working environments and relationships, contracts, and so on.  

So basically, what economic theory would predict here is that, you know, any of these level of efforts that are feasible, and we can think of some integer numbers from one to N, are actually going to be these equilibrium outcomes.  In other words, whatever level of effort you put in, you want to put that level of effort to be equal to the minimum.  And it can be in any of these numbers, but everybody works the same amount of time.  In particular, everybody can work the minimum or everybody can work the highest number of hours that is feasible.

And so basically, economic theory is silent on choosing one of these equilibria.  Why?  Because there are all -- there are some criteria that would say that what we need to do is use what we call pay of dominant equilibrium because agents are smart enough to know that that’s going to result in the highest payoff, and other criteria that say you want to basically maximize under worst possible conditions, in which case you will go to the lowest level of effort, and thus the whole econ -- you know, the whole group is going to end up with the lowest possible payoff.  

This type of environments have been used extensively in sort of a literature that deals with modeling macroeconomics and how crises and boons can arise just based on people’s sort of expectations and changes, and their beliefs of what other people will be doing.  And so if you think that nobody else will be investing or working hard, then you won’t work hard as well.  If you become optimistic and start thinking that, “Oh, you know, everybody else will be investing a lot,” you’ll do the same.  

So, now with the experiments with human subjects, we put human subjects to play these games, have shown -- and this is overwhelming evidence that’s been replicated many times -- is that basically the outcomes of these experiments depend on the size of the group.  And generally speaking, small group sizes do tend to go and work harder and get higher payoffs.  Now, this is the environment where we do not really -- we cannot communicate to the other person, right?  We -- the person is anonymous, we only know that we are playing the same game with the same person repeatedly.  And so group size of two or three people will go and work the hardest possible amount, while if you go to the -- and put in ten to 14 people in the same group, they converge very quickly to the minimum level of effort.  And again, this is pretty strong evidence of this. 

So what do we want to do here?  We want to see if we can come up with this model of adaptive behavior that is going to generate some dynamics and see how well these dynamics, first of all, capture the experimental evidence, and whether we can say something more about why -- why we observe these sort of coordination problems.  So what I’m going to do here is show you the way I’m going to represent our players, and it’s going to be by these strategies so that -- so what is happening here is my -- basically, I have these positions in these strategies, P1, P2, P3, and P4, and what these positions are telling me with these numbers, two, four, one, and four, is what the player is going to do given that the minimum level of effort in the previous period was equal to one, two, three, or four.  

So suppose that he was informed that in the previous period, minimum level of effort was one.  He looks up the position P1 in his strategy, and that position instructs him to play a level of effort equal to two, and so on.  If the minimum effort from the previous period was equal to two, then this strategy suggests that he should play four and so on.  Obviously this doesn’t look like very rational behavior, but we do start our players here exactly randomly generating these strategies.  So the number of these positions is going to be equal to the number of possible levels of effort, and they are going to tell the -- instruct the person what to do given what has -- what happened in the previous period.  

So they’re going to play this repeatedly.  And they’re basically -- there is a whole population of these players, and they’re going to be split into groups of different sizes, so we’re going to change these groups.  And so, what we can see here is that this is one type of an equilibrium that can occur in this environment, and this is that everybody is playing the maximum level of effort, four.  And this is basically -- so if somebody played four in the previous period, position four instructs the player to play four.  And to be in this equilibrium, what is required is that everybody has a number four at position four in their strategy.  Important thing is that other elements of this strategy then become irrelevant and they will sort of serve the role of what we could call genetic drift.  In other words, this can be us -- as long as the strategy has four here, it can have other elements here because they are irrelevant for that particular outcome.  It will turn out to actually be relevant and important for the dynamics of this model. 

The second type of a behavior that we can observe is what is called -- what we would call cyclical behavior, and this is the behavior where -- so somebody played two in the previous period.  We look at position two, the strategy instructs this person to play four. Well, they play four, so in the following period, if the minimum effort was four, the person plays two and everybody else plays two.  If they play two in the following period, position two instructs them to play four.  So they would be cycling back and forth between these two levels of efforts, just based on this coordination.

So, here what we have in those, as I’ve said -- as I’ve mentioned already, it’s what’s called neutrally evolutionary stable strategies.  In other words, if you’re thinking about adaptation of these strategies over time, these strategies, again, can have different elements here and still be an -- you know, still be the equilibrium outcome in this particular situation.  However, they can be invaded by strategies that will have different elements in other positions, and then as a result of that over time, enough of basically experimentation is going to bring about a change, and the change in the sort of an average level of effort that is played within a group. 

So, they are split into these groups of different sizes, and we are going to basically examine what the outcomes of these -- of these are, and what they -- after repeated interactions, their strategies are going to be updated using basically evolutionary algorithm based on -- basically, it can be genetic algorithms, stochastic replicator dynamic, or something else.  But the main ingredients of these algorithms are that agents are going to copy strategies of those agents who had higher payoffs, and the frequency of these strategies increases over time.  They overtake the population, and then at some point, there is some experimentation with new and different things.  And so that’s what they will be doing here.  So, we have the fitnesses evaluated, and then updating the frequency and, again, the frequency of those that are better fit increases in the population, and then there is experimentation with different things. 

Now, one possible -- you know, if you think about this process, you might think that, in fact, this is going, at the end of the day, to sort of converge to a specific outcome as, you know, better strategies will be taking higher and higher fractions of the population.  But because of the specific type of this model, it’ll turn out that this type of environment never reaches and never settles to a particular outcome. 

Okay.  So what happens here, it turns out that all different group sizes do tend to play all kinds of equilibria.  They go through different -- though different levels of effort.  The small group size spends most of the time playing the highest level of effort, which is in this case, level of effort goes from one to eight, and you can see that group size G of two has placed highest effort 84 percent of the time, and then this number decreases as we go and increase the group size here.  So that as we go to group size of six, seven, eight, ten and 12 and 14, you can see that this basically -- the groups play different -- different levels of effort, and this is all done within a single simulation.  So within a single simulation, groups of the same given size do go through -- through different levels of effort.  And at the same time, they do play a high percentage of best response, by which we mean they do spend most of their time playing the same effort within the group, equal to the minimum effort.  So there is an element of this best response in it all the time, which I talked about before, and so they are -- it’s not just wandering around and doing whatever.  They do coordinate on this in a particular way, but they do change over time. As a result of what?  As a result of these -- basically things that have -- they’re taking place on part of strategies that do not matter at a particular -- at a particular moment.  

So this is example where -- I didn’t talk about this P -- P0, that’s just what they do in the initial time period.  This is an example where we can see that the players -- these are the players, one to 14.  The whole population consists here of 40 agents.  This is just cut for -- so that it can fit the page.  And you can see here that this population, basically, at this time period, is in an equil -- is in an equilibrium where everybody’s playing the level of effort five.  So everybody plays five, then in the following period, the players look up their strategies, position P5 tells them to play five, everybody plays five, and so on.  So this goes on for some time.  

However, you have to look at other positions as well, and these are the positions that will change over time, and then affect what happens to the -- what happens to this group of people.  They will not stay all the time playing five.  Another thing to note here, if you look at other positions, there is -- like, P1 will play five, P4 will play five, and so on, and this is what we would call is sort of serves a protective role.  In other words, these positions kind of evolve so that there is a protection against some sort of a mutant, so if by accident somebody plays one, then the player goes and says, “Oh, minimum effort was one, well, I’m going to play five,” and they get back to the higher payoff equilibrium. 

But there are other things going on, and mutation will create different things in there.  So after a few hundred periods, it’s the same population, it’s the same simulation with the same group size.  They’re no longer in that equilibrium playing five.  They have evolved to something that could be called, basically, two cycle, and where they’re playing, basically, cycle of three and eight.  If you look at the position three, that means somebody played three in the previous period, minimum.  I’m going to play eight.  And this is like that for everybody, right?  So, everybody is going to do the same thing. Okay, so the following period they play -- they play eight, and then they get information of the minimum effort of eight.  Then they say, “Okay, now I’m going to play three.”  Everybody plays three; they’re back to check P3, which is eight.  So there’s cycling in this case that resulted just as a, basically, of the changes that were taking place and the parts of the strategies that were not important while they were playing five.  And so, that’s this role.  So, in general, in this sort of behavior, one has to be careful about what happens in other parts of your, basically, rule or strategies, that they’re not relevant for a current situation, but that might along the way trigger, basically, different changes in the behavior and in the environment.

Okay, so I’ll quickly say about the two-currencies environment, which is completely different -- different applications.  Agents make -- in these environments-- savings and portfolio decisions, and they have to decide on how much to invest in -- in each of the two currencies.  Again, utility is based on their investment decisions.  Now, what they do is going to affect the rates of returns on these currencies, and that in turn affects their payoffs, and changes their behavior.  So then we have this evolutionary approach.  What happens in these economies is that we observe, basically, persistent fluctuations in an exchange rate, which is quite the opposite from, basically, the usual neoclassical models.  Usual models of international finance cannot generate any sort of the volatility that is observed in the real world.  However, here, these agents chasing higher returns all the time are going to be perpetually sort of switching and changing their portfolios so that we end up with these persistent dynamics, completely different from equilibrium -- equilibrium behavior.  

And, basically, there has been a lot of work done by myself and some other people about comparing the features of these models to the real world data and, again, to the experiments with human subjects.  So to go back to Carl’s point about -- we have to worry about the tails as well.  Well, it turns out that these distributions that are created have what we call fat tails and high kurtosis, higher than normal distribution, and that is exactly what’s observed in real world data.  There are also chaotic time series, indicating this emergent complex behavior, and the -- the agents do actually perform, in terms of their utilities, very close to what the rational agent would be -- would be doing in the same environments.  Okay? 

This is a similar thing but only with, sort of, a developed and developing country.  Here, agents are updating on their probabilities that a devaluation will take place.  High probabilities of devaluation -- there will be pessimistic investors investing in a safe asset; low probabilities of devaluation, optimistic investors investing in a riskier asset.  Then there is sort of an average of opinions that forms, and everybody who falls below the average is going to end up investing in a risky asset because they’re, on average, more optimistic, and those who are investing in -- who are above the average will invest into a safe asset.  They’re going to be above the average.  

So, again, there is -- they receive returns from this.  In general, a riskier asset will give them higher returns except if there is a devaluation, which can take place with a -- in a developing country, in which case, that return gets to be smaller than the safe -- return on the safe asset.  Again, strategies updated in a similar way.  So here, again, there is another thing, we do observe the phenomenon of recurrent crisis, which is again something that characterizes the real world.  

So, the model does not settle into a particular outcome.  They -- they do basically fluctuate all the time. They are moving back and forth into the market, and out of the market, and so these changes are driven by changes in their estimates and differences in their payoffs.  So, basically, again, if you look at the time series properties, they fit real world data well in terms of duration, frequency, and so on.  And I just wanted -- this is like a picture of, basically, of how the estimates of the probability of devaluations go up and down, and every time that they go up, the -- there is a, you know, very much -- there is a possibility of a devaluation, and devaluations which are presented here on the third panel, here -- these green lines are these devaluations.  If you look back on the probabilities that devaluation will take place, they have hikes here, which means people get out of the foreign market, and as there is -- the devaluation takes place. 

So, here is a simulation that shows, over a certain period of time, how this population of beliefs moves from being very optimistic to being very pessimistic.  So here, what is on the X axis is basically the fraction of agents that, well -- it’s the probability that there will be a devaluation, and so zero is the small pro -- right -- very small probability values closer to the right hand side are very high probability.  So at this point, there is no devaluation.  People are earning higher pro -- higher payoffs if they’re in the foreign market, so everybody’s trying to be optimistic about the market and they will all try to be -- to be squeezed into the -- as, as you know, to have as low as possible probabilities, because there is an average, and there will still be some who will have to end up in the safe asset as -- as relatively more pessimistic.  

So they’re all moving towards left, and you can see that there’s a tail, that distribution is skewed.  And this is still going on, but there are some people who are now to the -- going to the right.  There is a blue vertical line showing the average payoff.  So this is just a genetic -- sort of a genetic drift that’s taking place.  There’s some more that are more pessimistic, meaning less funds in the -- in the emerging market.  And now this causes devaluation.  So devaluation occurs, everybody who’s stuck in the emerging market is going to suffer now, lower returns, and you can see there’s still devaluation and there are people moving outside of the emerging market quite quickly.  Moving further, but devaluation is still taking place, and now they’re how -- how -- how they can get out of the market is by increasing their estimates of probability of devaluation.  And so, basically, they have to take -- get out of the emerging market enough as to make it possible for the devaluation to seize, to exist.  And this goes on all the time. 

So that was my -- what I wanted to just say about the -- is that, basically, these are self-referential systems.  Interacting of these agents’ adaptation over time, dynamics driven by changes in these strategies, and dynamics depend on the underlying environment. Everything depends also on the details of the model and parameter values.  And so if you’re think about modeling similar dynamics in terms of population health, it is easy to sort of see the same sorts of environments if they’re set up in the appropriate way, to -- for -- to address issues in, basically, related to health.  And then to, kind of model and think about the ways in which -- in which we can set up strategies or beliefs or behavior of people in your models that might be of interest, and how they change over time in response to the changes in environment and vice versa. Okay? That’s all.

[applause]

Female Speaker:

Okay, I’d like to thank the three speakers this morning for their interesting and thought-provoking presentations.  And I’d also like to ask them to come up to the table for the question and discussion session.  And I’d like to also invite our moderator up, Dr. Michael Wolf -- Wolfson, who I mentioned is the Assistant Chief Statistician, Analysis and Development at Statistics Canad -- Canada, and he clearly wears many hats in this capacity, including analytical and modeling activities. And I’ll let Michael take it from here.

Michael Wolfson:

Thank you. Can I start by just checking on our time constraints, because we have lunch scheduled for noon, which is in twenty minutes and --

Female Speaker

We’re about 10 minutes behind now, so [inaudible].

Michael Wolfson:

And a shorter lunch.

Female Speaker:

Yeah.

Michael Wolfson:

Because I actually prepared a few comments, so I’m going to usurp a little bit of the question and discussion time, but anyways, we -- hopefully it’ll all be lively anyways. We’ve had three very stimulating and varied presentations, and I want to exercise the prerogative of having the microphone for a second.  First, to pick up on Scott de Marchi’s things, where he talked about the need for the right level of complexity or simplicity.  You might call this the Goldilocks principle, not too hot, not too cold.  But it really does, to my mind, bring forward the point that this -- there’s an art of modeling, not just a science of it, and choosing the way you paramaterize or structure things. 

He posed as alternatives but it seems to me one should think also of them as complements, the statistical estimation process, all the econometrics that you seem to feel you’re forced into teaching, and the agent-based or network models that you showed and Mark showed, and Jasmina.  And as we move from toy models to some of the things that we do at Statistics Canada, which are more what I would call “industrial strength microsimulation models,” obviously we need to draw on data and empirical regularities. 

I’d observe a bit of a tension between Mark Newman’s and Josh Epstein’s model.  Mark showed some networks, for example the one on sexual partners, which he characterized as dynamic, but I think it was dynamic in a very narrow sense.  

There was changing partners over time, but the networks themselves are fixed, whereas Josh was showing people running into the basement, and it seems to me building in some kind of endogenous response of these networks in infectious disease outbreaks, for example, is -- is -- got to be a crucial part of the real world exercise.  You know, for example this idea of social distancing varying as a function of fear.  More generally, we’ve been exposed to a range of modeling methods.  A key theme of all of them has been an acceptance of a degree of complexity that forces us to abandon some crucial mainstream methods, for example, random mixing and differential equation models with a combinatoric explosion, if you have many different compartments in epidemiology, and omniscient maximizing frictionless agents in economics, something I find personally distasteful.  

I think we can array these methods.  We heard a bit about network modeling from Mark Newman, agent-based models with fixed behavior, and then Jasmina had agents with adaptive behavior, and if I could briefly characterize them, I think the network models are very helpful for informing our intuition on a number of things, but I think they’re too simple for real world questions.  The models with fixed behavior of the agents are practical, and they can still incorporate quite complex behavior and some endogenative response.  The ones where the agents actually change their theories of the world is ultimately the most realistic, but very difficult, and I think it’s signaled by -- in the last paper -- how highly abstract the models are, even though they give you interesting textures and flavors of results.  

One more comment before I open and ask -- hopefully, peop -- yes, there’s at least one person at the mic.  You know, and here we get questions from the floor, is that these -- you know, this was the views from field A or the views from field B, and my sense is that all of these views are still very far away from population health.  The -- you know, that, if we recall George Kaplan’s opening remarks, you know, he was talking about the lack of correlation between money spent on healthcare and health as measured by life expectancy and infant mortality, the relationships between income and income inequality and polities -- so those are two different levels -- and health. The story in Eastern Europe and Russia about the decline in mortality, which couldn’t be genetic; they don’t change genes that quickly.  

So the challenge that I think we still face in this conference, which I’ve found quite stimulating so far, is can we find elements of their various models and analytical approaches that can be brought to bear on the big questions in population health?  For example, how do we explain or understand the socioeconomic gradient in health?  And I’ll shut up after just saying my conjecture or answer to that question is we can, and it’s to mix a, you know, the ubiquitous single-equationitis of much empirical social science and epidemiology with what I would call metasynthesis, sort of gluing things from disparate topics together and using an agent-based model as the grand container that holds and brings all this stuff together and makes it coherent. But -- Alan, first question.

Male Speaker:

Thank you.  First question is for Mark, and then I’ve got a brief follow-up question for the whole panel, if I may.  Most of my work is around evidence-based decision making in healthcare, and in particular the question of how research moves into policy and practice. How do we do that?  And as I listened to your presentation, Mark, I was intrigued by the idea of positive epidemics.  Essentially, if there’s any kind of new evidence-based guideline or something, it’s going to move through a -- the network exactly the same way that an infectious disease does, and we can model it very nicely because often we know in advance the network structure and lot of the individual characteristics and others that may moderate that response.  Have you done any work with positive epidemics?

Mark Newman:

I haven’t but this is something that many people have looked at, so another use of these models of social networks is to study how ideas about public health move through communities, best practices, and how things are adopted by members of the population and so forth.  And as you say, those spread in a way very similar -- the ideas spread in a way rather similar to the way the infections spread.  So there has been, actually, a lot of work on that kind of thing, starting from the 1960s onwards.  People have looked at things like the adoption of practices in hospitals.  They’ve looked at the adoption of contraception in rural communities.  There’s -- there’ve been a variety of studies on things like that. So, no it’s not something I’ve done, but it’s certainly something that quite a large community of people are looking at.

Male Speaker:

And then the follow-up question for the whole panel.  In the real world, I think what we are looking at is a -- an interweaving of teams and networks.  Teams being the groups of people who have some kind of formal responsibility to work together, and networks being more informal -- networks of the kind of people that end up working with you to get the job done.  So that what we need is a blend, if you will, of Jasmina’s and your methodology so we can study teams and networks in combination over time.  Does the panel have any thoughts about that?

Jasmina Arifovic:

Can I?  Yes, as I also mentioned in my talk, that’s definitely an important next step to be done, and I think that that can really bring some interesting results, blending in networks and studying those together with bringing in teams, which is part of our everyday life in different -- in different aspects.  And I would just like to make a quick comment on this -- the models that are presented here today are two very simple models.  The idea was to just kind of try to convey this idea of what it is about.  However, agent-based modeling has made progress in terms of putting more things together.  We have to be careful, though, in how we do it, so that we still can keep trea -- track of the dynamics and that they actually mean something that we think is interesting.  But I definitely think that is an important next step to be done.

Michael Wolfson:

Other -- Mark or Scott?  No. George?

George Kaplan: 

Well, I think you want -- yeah, let’s alternate.

Michael Wolfson:

Okay.  No. 

Male Speaker:

They’ll -- they’ll bring it up.

Michael Wolfson: 

Start talking and see what happens.

Allison Pinto:

Well, I’ll just talk super loudly.  My name is Allison Pinto, and I’m in Tampa, Florida, and I’m a child psychologist by training, so one of the things that I’m interested in is how we can apply these different frameworks and methods to understanding population mental health, and in particular, population early childhood mental health.  And one of the things that I’m really curious about is how we might begin to use the different methods that -- that you all have talked about this morning to inform our understanding of what it would take to actually transform whole communities so that we see radical improvements in the health and well-being of, in my case, young children.  And so there were a few things that were striking me across the presentations, though, because it seems like you’re talking about social network analysis as one approach, and then we’re talking about agent-based modeling as another approach, and in each case, though, there’s this talk about understanding the networks and interactions between agents as they reflect or don’t reflect states of equilibrium.  

And so one of the things I just wanted to clarify with you all is, is the emphasis on equilibrium, is that -- I guess I’ve been surprised by that here, because one of the things I [unintelligible] in complexity approaches is that we’re kind of stepping away from equilibrium as the emphasis.  I’m thinking more in terms of self-organization. So that’s one question.  Is -- your approaches using these different methodologies as a means of understanding equilibrium, is that the same as understanding self-organization of human systems, or different? And then --

Michael Wolfson:

Let’s pause there. 

Allison Pinto:

Okay.

Michael Wolfson:

Okay, that was a long question.  Does anybody want to comment?

Jasmina Arifovic:

I can comment.  Yeah, I realize that as I was talking it kind of came out as probably the -- a focus of the -- of the analysis.  In fact, why I used this was because in some previous talks, the microeconomic phenomena that we talked about came up and people -- and there was -- and then people said, “Okay, you know, even though there is this other thing going on at the individual level, at the macro level we can see something that corresp -- you know, that is close to these.”  But by no means is this meant to be something that is --  that studying just how far we are from the equilibrium or whether we get there.  In fact, all these dynamics are actually persistent in terms of being away from the equilibrium.  

Now we have to use some outcomes here as the reference points, in this case, just to make, you know, to be able to explain some of the things, and to try to understand them. But they are moving away -- none of these, well, at least the two that I presented, are not really trying to say, “Okay, we can get to equilibrium.”  It is the behavior that’s observed, but is it not -- it is moved away from the equilibrium prediction would be.

Allison Pinto:

So, so -- but there is still an assumption that we’re orienting around equilibrium as opposed to self-organization, or are you using those two terms to mean the same thing?

Jasmina Arifovic:

Well, I’m -- I don’t see them as exclusive. I just use those as reference points as to where we are in our self -- self-organization, so that’s -- maybe you --

Allison Pinto: 

Because I guess one of the assumptions, it seems here, and it’s a challenge we have, and then I’ll stop there, but is -- we don’t seem to be asking the question of, when is illness healthy, right?  That’s the question that, I guess, I’m having a -- some trouble understanding how we approach using the methods that we’ve described, and I don’t have the sense that we’re talking about the fullness of human experience.  So if we’re talking about human complex systems, then I’ve heard talk about rational beings, so we’re talking about thought and we’re talking about behavior, but where does human feeling and where does human physiology get in the mix of micro self-organization so that we can understand the phenomenon of health or mental health at a population level?

Micahel Wolfson:

We should move on.  I’ll take that as a profound comment that we need to reflect on.  George?

George Kaplan:

Okay, I’m going to try and be short, and -- and I think this applies to all three of you, but it could also equally apply to the final panel.  I take it that the goal of modeling is to somehow represent the world of animate and inanimate objects, and how they come together and move apart, and what happens as a consequence of that.  And, you know, the -- we’re happy when the -- the relationship between the -- our starting conditions and the ending conditions, what we observe in the model, is in some way isomorphic with what we believe is happening, or what we observe is happening in the real world.  

But my question is, there must be within that isomorphism, many, many possible sets of mechanisms that would generate the same relationships, and that seems to be tremendously critical if we -- I guess it’s not a short question -- that tends to be tremendously critical when we think about taking that knowledge and translating it into practical interventions, et cetera.  And I would -- I would ask you to just comment a bit on how do we know when the model is, in fact, a nice -- a good model of reality?

Mark Newman:

So I think that’s a really good question.  You can build a model and it gives some outcome and the outcome looks like something that happens in the real world.  Is that a confirmation of your model, or could some other model have given the same result?  I think this is a really common issue in this kind of modeling, and you frequently see this kind of mistake made, you know, the kind of, bears like honey, my wife likes honey, therefore my wife is a bear [laughter], kind of logical deduction.  You know, because this model agrees with what you see in the world, it doesn’t necessarily mean it’s correct, so -- and I think that the answer is that you have to have some other information that comes from outside of the model.  

For example, here you -- in the kind of things that I was talking about, if you actually have some knowledge from the public health community of how this disease spreads and what the important mechanisms are, if you really believe that you understand it, and then you build a model that incorporates the things that you believe are important, then that gives you more of a feeling that your model might be a correct one.  You could have made some other model with completely different mechanisms in -- that would have given the same results, but you wouldn’t believe it because it -- it doesn’t build on this external launch that comes from somewhere other than the model.  And I think that you need to have that kind of external knowledge in order to develop any kind of faith in the model that you -- that you built.

Scott de Marchi:

Can I expand a little?  I think that one of the goals of my talk is the standards you would use when someone comes to you and says, “I have this new independent variable, I have some term-wise non-linearities I want to apply to it, and the mean squared error gets better.”  And you would say to them, “Well, okay, that has to be true.  There’s always, you know, systematic parts and non-systematic parts and you might be leveraging one or the other.”  And so your reasonable standard would be, let’s generate new data or partition our sample into an out of sample set and see if you do better on that.  And the same has to be true of this. 

I’m always not so sympathetic of explanations.  I like predictions.  And in all of these models, if you fit it to one flu, let’s say the 1918 outbreak, and without tweaking your model very much, you fit it to another outbreak and it works, with just changing the parameters in reasonable ways based on the differences in the cases.  Then your betting odds improve.  I don’t think the standards are any different for computational models than anything else, and that applies to the parts as well, the long laundry list of parts you could add, neighborhood effects and all the rest.  If they make the model better, they make the model better, but that means you need to have an unobjectionable dependent variable that you’re using to evaluate.  Which is a tough standard.

Michael Wolfson:

Good.  Next person.

Male Speaker:

Hi.  It -- it seems to me, as we think about moving to the end of this conference, as w -- should talk about next steps and sort of where are we now?  What are the big challenging issues and how might this whole approach inform impacts on real people in the real world, which is sort of getting from the modeling to the practice.  And one of the things that we haven’t talked about much, but I think came up indirectly in several of your presentations, was an attempt to go back and forth between calibrating real time data in the real world, whether it’s a laboratory simulation or looking at the actual flight of airlines across the world, and anchoring some parameters in the real world.  

Well, if you think about other technologies, for example, the MIT Media Lab developing real time sensors that can be worn and uploaded through PDFs, so that you can envisage, let’s say, the Oregon model of tracking a whole city in real time, and getting volunteers to  -- to sort of wear devices where you could, for example, in real time, gather data at the individual level, perhaps even at the neurocircuitry level about how people make decisions, but scaling that up to aggregate neighborhood and community and city level. The idea of using these new technologies to create a cyber grid or a cyber infrastructure at multiple levels of aggregation, at different time units, from rapid-cycling individuals to perhaps long-cycling community aggregate data, for example, would allow us to go back and forth so that computer modeling could inform what kind of data we should be collecting, that in turn would feed back more accurate parameters for the next iteration of modeling. 

So I wonder if you could just talk a little bit about, I guess what I’m loosely calling a continuous quality improvement cycle between practitioners and real world data on the one hand, and modeling, and even hybrid models where you could imagine agent-based models being integrated with higher order models as you go up to, say, dynamic systems modeling.  And how that might all work as a way of moving the field forward towards models that model reality closer and inform targeted and tailored interventions that might make a big impact on the real world health outcomes.  How do we close that gap?

Michael Wolfson:

Panelists? Who wants to jump --

Scott de Marchi:

I think our moderator had a similar statement, which is if you have to pick a distribution, don’t pick it as a nuisance.  Pick it based on real data, which means you need people to have domain-specific expertise to help you.  You can’t just throw data, though.  I mean, one easy example in AI lit is the face recognition problem in airports.  So they want to photograph you and, you know you’re -- you’re sometimes occluded depending on how the photo was taken and all the rest, and the pixels of themselves aren’t very useful.  You need to derive a features base based again on people saying that the length of your nose is a relative ratio with the width of your face map matters rather than pixel data. 

So at no step of the way, I think, are we every going to have modeling where you can throw data at multiple levels and magical things would come out.  You always need to have this partnership with people that do applied work to say, “This is the exact form the data has to take.  These are the measures that are parsimonious and effective in other practice areas,” and then build from that.  And that is not often done.  It takes time.

Michael Wolfson: 

Mark or Jasmina?

Mark Newman:

Scott also, in his talk, touched on this idea of choosing the level of modeling, which we’ve heard from some other speakers at this meeting, which I think is an important one. You’re talking about developing these very detailed data sets that give you a lot of microscopic information about what’s going on and would allow you to make extremely detailed models, and those models can be useful for certain things.  When you make very detailed models, they give you good predictive ability.  When you make simpler models, they give you more insight, in many cases, about what’s going on.  

And sort of the extreme example is if -- if I really had all of this data about where everybody was moving and what everybody was doing at every moment, then I could make it -- an entire copy of the whole city or something on my computer, and it would give me zero insight.  It would give me no more insight than the actual city in the real world, because it would just be a copy of it.  But it would be ver -- a very good predictive tool for things that are going on. 

So you can go from, you know, the one end of excellent prediction and zero insight, to the other end of these simpler models, which really do have a role to play because they actually help you understand what’s going on rather than just predicting it.

Michael Wolfson:

Can I sneak in one more question? 

Male Speaker:

I’ve just got a comment, so it’s going to be a short one. 

Michael Wolfson:

Okay, fire away.

Alan Shiell:

Alan Shiell, University of Calgary.  I’m -- I’m just a little bit concerned that we’re digging a bit of a gulf between the systems guys and the population health guys, and I think it’s a function because the system guys that we’re talking to here don’t know a lot about population health, and some of the population health speakers don’t -- apparently don’t know a lot about the systems stuff. 

So let me give you three quick examples where they have come together and where in fact we are using these ideas.  The first is -- is descriptive, so we’re not getting into interventions yet, but work by Spencer Moore, who’s now at University of Montreal, has shown how the place of a country in a trading network, in its networks, its place in the structure, over and above GDP and education levels of women and so on -- it’s place in that network structure independently predicts infant mortality.  So we know there there’s a relationship between networks and health.  

The second area is in the field of social capital, which before it was purloined, if you like, by Putnam and then Ichiro Kawachi, was a network variable, and work of Valerie Haines at the University of Calgary and Jenny Hurlbert and her partner, who’s name escapes me, at the University of Louisiana, has shown how network capital, how you’re positioned in a network, mediates the effect of trust, the Kawachi type of social capital measures on health, and how we can use that network structure as an intervention.  They, remarkably, have got network data pre-Katrina.  They said, “a hurricane’s going to hit New Orleans at some point, let’s go in and get network data.”  They’ve got social network data now. 

And what that’s showing is that the dense networks, typically of lower socioeconomic groups, which are usually protective against health threats, there were damaging, because if your network is all in the same position and a hurricane hits, it wipes out your network. The people that survived Katrina had diverse networks and could get out of New Orleans. And then the third example I’ll give you is a local one, because amongst the best people I know who are using network ways of thinking, and system ways of thinking to promote health, are here.  I’m talking about Barbara Israel’s group, Amy Schultz working in the Detroit -- the Detroit east side, where they’re using community development techniques based on social networks, to empower local communities to tackle broader social determinants of health, and doing it very successfully as far as I can see.  Thank you.

Michael Wolfson:

Good. Thank you. And it’s lunchtime. Is lunch in the same place, you’re going to handle all that.

[applause]

[break in audio]

Male Speaker: 

-- a Michigan product, Kristen Hassmiller Lich, who’s currently an Assistant Professor at the -- at University of North Carolina, Chapel Hill.  She received her doctorate from the School of Public Health, but had her other -- had one leg in the School of Public Health and one leg in the Center for the Study of Complex Systems, I think it’s fair to say.  So we’re thrilled that she’s able to come back and tell you about some very interesting work she’s done on the application of systems and complex systems thinking to the tremendous problem of tobacco.  Kristen?

Kristen Hassmiller Lich 

Thank you so much.  It’s wonderful to be back, and let’s see if I can figure out how to get this to work.  Let’s see, where are we?  Okay, here we are.

Male Speaker:

There you go, okay.

Kristen Hassmiller Lich:

Okay.  So, today I want to talk to you all about my dissertation research, that I -- that I completed while here, on the interaction -- the association between smoking and tuberculosis.  This is -- this is my attempt to sort out some of -- many of these issues that we’ve been talking about over yesterday and today in terms of -- if you’re going to model, why?  And what are the purposes, what are the benefits?  How simple versus how complex?  So hopefully you all will be able to get some insight on -- on what I’ve learned through this process.  I also want to talk about -- I want to talk about this example, hopefully because you’ll find it interesting, but also so that it may inspire -- inspire you to think about other population health examples.  

I also want to provide some intuition on the model, and go a little bit quickly through this because Carl and Josh Epstein yesterday did a -- did a great job of that, but I’ll see if I can provide a little bit more intuition for those of you for whom this is -- this is new. I also want to give you guys some sense of why, in particular, I think that this type of modeling work is useful.  Let me start by just giving you some background on tuberculosis so that this whole presentation will make sense.  TB is an airborne communicable disease.  It’s a leading cause of death worldwide.  An estimated nine million new cases of tuberculosis occur each year, and two million individuals die of tuberculosis.  Tuberculosis causes one quarter of all avoidable deaths worldwide, and is the second most important cause of -- of death and disease from infectious agents after HIV.  

Growing up, sort of, academically in the tobacco policy world, I knew very little about tuberculosis and was just absolutely amazed at what I found.  One third of the world’s population is infected with TB.  That’s really amazing, that’s really mind blowing. This is a huge problem, and -- and among those who are infected, an estimated 10 to 15 percent will go on to develop disease at some point in their lifetime, making this a very complicated disease to wrap your minds around.  So we’ll talk a little bit more about -- about TB pathogenesis later but I just want -- want to make that very clear.  So, a lot of people are infected, a small percentage of them will develop disease later in their life, at which point they are infectious.  Okay, and although an effective and cheap treatment for tuberculosis has been around for fifty years, the global incidence rate of tuberculosis continues to rise. 

The first -- the first time that I really heard about tuberculosis, took an interest in tuberculosis, I was sitting in a tobacco control conference, and Sir Richard Peto had just finished a huge epidemiological study in India and mentioned, as an aside, that tuberculosis killed more smokers than all forms of cancer combined.  And that really blew my mind, because as someone with an interest in complex systems issues, tuberculosis isn’t like lung cancer or heart disease.  The disease risks don’t stop with that individual who smokes, so if I smoke, not only am I at a higher risk of developing disease myself, but then I’m more likely to spread on my infection, increasing the risk that you, my -- my husband, or my neighbor, or someone I sat next to on a bus, may be infected and develop disease later in their life.  

So I started digging into the literature and I wanted to understand this association a bit better, and what I found was that ever smokers, people who’ve smoked, have a higher risk -- unconditional risk of being infected with tuberculosis, of developing TB disease, and of dying of tuberculosis.  These risks are not explained away by controlling for potential confounders, such as age, sex, alcohol consumption, income, or HIV status. There is a strong and significant dose-response relationship, so the more an individual smokes, and the longer an individual smokes, the higher are these risks.  And lastly, there are indeed feasible physiological mechanisms that have been proposed in the literature that would -- that would explain how this relationship may be causal.  Okay. 

Let me just talk a little bit about smoking to sort of paint the other side of this picture. One third of all adults over age fifteen in the world smoke.  That’s 1.3 billion people.  And smoking is known to kill half of its long-term users, one quarter of those in middle age, between twenty-five and sixty-nine years -- years old.  And although smoking prevalence is stabler, or declining, in developed countries -- in many developed countries -- that’s not the case in developing countries, the same countries where tuberculosis epidemics are often quite large.  Okay.  

Currently in the -- in the US -- in developed countries, the average smoking prevalence among men is about 33 percent.  That percentage -- that prevalence in developed -- in developing countries is higher.  It’s 50 percent, 54 percent in countries in transition.  And it’s much lower in women currently in developing countries, but that is changing.  Women, in developing countries, comprise the segment of the population in which smoking prevalence rates are increasing most dramatically, particularly in countries in Asia and Africa.  So truly the -- the TB and tobacco epidemics are on a collision course.  These are important in the same types of populations.

My motivation for this research is really threefold.  First of all, the impact of smoking on TB is not well understood, nor is it appreciated.  And this has changed over the past year or so.  People are starting to recognize smoking as an important risk factor for tuberculosis.  But -- but what they’re hearing is that -- is that the relative risk, and I’ll talk about this a little bit more, is on the order of two.  So people who smoke are twice -- twice as likely to be infected with tuberculosis, slightly more likely to develop disease. And it’s easy to blow that off.  And so -- so one motivation, one very strong motivation for this research, is that I really think that it’s a much stronger message, rather than -- rather than telling these relative risk values, this in -- the information about this individual level risk factor, I want to talk about the population level implications.  What does it mean at the population level for smokers to have a risk of developing TB disease that’s two times higher than non-smokers?  

Okay, so second, from the tobacco side, many developing countries are not yet convinced that controlling tobacco is in their economic interests.  You hear this sort of thing all the time, that while smoking, it’s really just something that -- that causes disease and death later in life, and it’s a small pleasure and it’s just -- it’s just not a priority. But tuberculosis is and so this association becomes important. 

And lastly, current policies for TB did not yet address smoking as a risk factor.  And so a question is, you know, should they?  Perhaps they should. Smoking is a risk factor that we know how to change.  We know how to get people to quit.  It’s also identifiable -- we know who these people are who are at higher risk for tuberculosis.  So let me talk a little bit about traditional TB control.  What’s going on right now?  In 1993 the World Health Organization declared tuberculosis a global emergency, and so people got together and started thinking about how they could make the biggest difference fast.  And they came up with this strategy called DOTS -- that’s the acronym and it’s actually now pretty much known as DOTS, but it stands for Directly Observed Treatment Shortcourse.  And the idea basically, the five principles are listed up on the screen, but the idea basically is pass -- so, passive diagnosis.  So someone comes into a clinic and they’re coughing.  You want to suspect tuberculosis and test them, and if they indeed do have tuberculosis, you want to treat them and treat them well.  Okay, so the idea here is when someone comes into the doctor, these are-- these are easy -- these are easy people to reach, just make sure that you treat them as soon as you can, and treat them well so that they are no longer infectious.  Okay.

Tuberculosis is included in the millennium development goals for the year 2015.  The specific goals for tuberculosis are to reverse the increasing trend in TB incidence rates and to have TB prevalence and death rates between 1990 and 2015.  A lot of modeling work was done at the World Health Organization and elsewhere to establish process goals to help reach these outcome goals.  And these specific process goals, sort of focusing on DOTS as the -- as the main strategy, were to diagnose 70 percent of new TB cases and to successfully treat 85 percent of these diagnosed cases.  And so the idea really was to expand DOTS programs, so -- so, in India, for instance, you -- you want to try and cover a significant percentage of the population with DOTS programs so that people -- people can be referred for -- for good treatment.  Okay.

Some current policy issues: so, first of all, the status in terms of DOTS is that 83 percent of the world’s population, estimated, lives in an area that’s covered by DOTS, so they have access to good, high quality TB treatment.  That -- that’s a success. Many countries are now reaching, or are very close to reaching, these process goals that were established, 70 percent diagnosis and 85 percent successful treatment. But what’s being -- what’s being realized is that -- is that the outcome goals are not -- are not being seen.  There’s no evidence of these outcome goals in many countries.  So, so why is that?  What was wrong with the initial modeling? 

And then, another -- another sort of new policy debate is this idea of, okay, well, we are starting to reach these process goals.  What next?  And so there’s now this new focus at the World Heath Organization where they’re -- they’re looking forward fifty years and they’re thinking about TB elimination.  So what is it going to take to eliminate, to get rid of tuberculosis, defined as -- well, there’s two definitions, but the -- the one that seems more reasonable is, to get TB incidence rates to less than one per one hundred thousand people per year.  And so, these sorts of questions have also inspired and driven this research.  Okay. 

So my research -- the research objectives in my dissertation, first I want to -- I want to try and understand this association between smoking and TB.  Second, I want to try to better understand the mechanisms, the specific mechanisms underlying this association between tobacco and TB, because these matter.  They affect -- they affect the types of policy that -- that we can dream up, and how successful it might be. I’m going to talk very quickly about those first two, just because I think that they’re necessary for you to understand the analysis that’s built upon them, but also so you guys can get a sense of what -- what needs to come before the policy analysis.  But what I want to focus on is the third and fourth objectives.  I wanted to estimate the impact of smoking on population level tuberculosis outcomes.  I want to translate what is known about smoking as an individual risk factor to the population level, and then set -- and then lastly, in this -- in the initial stages of this policy analysis, I wanted to try and get a sense of what -- what impact we might expect tobacco control policies to have on population level TB outcomes.  Okay.

So, I began by digging into the epidemiological evidence, and I’ve talked a bit about this. I talked about how there is this association, that’s been documented, between smoking and being infected with TB, developing TB disease, and of dying of TB, and these are unconditional. But also there are -- there is an association between smoking and developing more infectious forms of tuberculosis, defaulting from TB treatments, so smokers are at a higher risk of not completing treatment and remaining infectious.  And also, there seems to be something different, and we need more evidence here, but there seems to be something a little bit different about how smokers respond to treatment.  So, given two months of treatment, smokers -- smokers are less likely to experience smear conversion.  And what that means is essentially that they seem to be -- they seem to be infectious after -- after two months of treatment.  

So, what I did after gathering all of this information and reviewing it was I conducted a meta-analysis, and this is really just a statistical technique to try and pool, or get a better sense of what these relative risk’s values are based on -- based on the wider available body of research, and this formed the foundation of part of this modeling work.  So just to give you guys a sense of the numbers, smokers -- ever smokers, and I define -- so what I’m looking at here is focusing on the difference between ever smokers and never smokers for two reasons.  One, this is how most of the epidemiological studies differentiated the risk group.  But second, in many developing countries, there’s very little quitting going on.  So ever smokers are one point seven times -- an estimated one point seven times more likely to be infected with tuberculosis.  Two point seven times more likely to develop TB disease, and two point four times more likely than never smokers to -- to die of tuberculosis.  And there are some ac -- some other numbers that start to get at some of -- some of the specific mechanisms in terms of increased transmission and whatnot.  But, what -- okay, so. 

What I did next was try to get a really good sense of how we understand tuberculosis to spread through a population and to develop -- to develop thereafter.  And Carl gave some examples of these types of models, these are many names: compartmental models, stock and flow models.  But the idea is, basically, that you want to split the population into the number of -- the number of mutually exclusive states that you care about.  So for tuberculosis, there are those people who are uninfected, people who are lately infected -- and what that means is people who have infection but are not infectious so they’ve been infected but are not infectious and they are asymptomatic -- and people with tuberculosis disease.  Okay. 

So you start to think about the rates, the flows between these states. What happens -- what happens to someone who is uninfected from what can happen to someone who’s uninfected from one period of time to the next.  And the flows are that -- so someone can either remain uninfected or they can become infected and develop disease.  So shortly after infection -- this is -- in tuberculosis, this is known as primary progression to disease, and this can happen anywhere from zero to five years after being infected, most commonly between two and three years after.  Or, someone can -- a person can -- their body can control -- their immune system can control this infection.  They essentially wall in the infection, but they are never able to clear it so they enter this -- this latent state where, at some point later in their life, something can throw things off balance and a person can progress to disease.  

So if you’re infected, you may either be able -- you may develop disease or you may be able to wall in the infection, control it and move into this latent state, or you can die from causes other than tuberculosis.  If you have latent infection, then in one period -- in a year, in a given year, you have a small probability of progressing to disease.  Either through endogenous reactivation, which means your body loses control of that infection, or exogenous reinfection -- you, you encounter someone else with infectious tuberculosis and are reinfected and progress to disease through this primary progression.  And -- let’s see -- okay, so you have a much smaller late -- rate -- or probability of progressing to disease from this latent state, but it never goes away.  So what is believed in tuberculosis is that once infected, always infected.  Okay. 

And if you have tuberculosis disease, then the things that can happen to you are that you can remain -- remain with disease, or you can move back to this latent state.  This is how I said before that if you recover naturally, so your body can sort of -- can gain control of the infection and you move back into this state where you have a small chance of progressing to disease later in life, or you can be successfully treated.  And again, successful treatment does not confer immunity.  Or you can die from your tuberculosis or things other than tuberculosis.  Okay.  So -- okay.  So, using the model that I just presented to you as a framework for thinking about how smoking, specifically, how smoking might impact TB dynamics, I dug into the literature again, and I read about how smoking alters immune response, how smoking alters lung function, thought about the social aspects of smoking behavior.  All the ways -- all of the way in which smoking may alter TB dynamics, using that model as a framework.  And so, I want to talk to you -- whoop -- talk you through -- I‘ll talk you through all of these individual level, sort of, impacts.  

Okay, so the first is that smoking alters risk of infection.  Okay.  Smokers -- smoking alters lung function, making it more likely that if someone is exposed to infection, that they will actually become infected.  Okay.  Smoking also -- so we’ve talked about this before -- smoking is also social.  So it doesn’t matter -- it doesn’t matter how this happens -- so, we’ve talked about mixing patterns.  Carl and others have talked about mixing and how so often this assumption about random mixing patterns happens, that anyone can contact anyone else.  Well, what I thought was that -- that with smoking, it’s not necessarily -- it’s not necessarily the case and so -- and things that aren’t random about contact patterns, right, really matter here.  

So what I wanted to -- to capture is the fact that if -- so smokers -- so an individual may be more likely to hang out with other people like themselves for several reasons; first of all, because -- because they frequent the same locations, they go to the same bars.  Oh, sorry.  Let me start this part over again.  The social -- okay, so the mixing being social. The idea is basically that an individual’s own smoking behavior may be a function of the smoking behavior of those around them, so the fact that my parents smoke may influence my decision to smoke, or it might be that the people around -- the people around -- ah.  I’m so sorry, I’m making a mess of this, but the idea -- the basic idea here is that -- that the social -- that the social aspects matter in terms of tuberculosis, and so people who smoke are more likely to hang out with other who smoke, so -- so that sort -- that sort of of makes bigger this issue that smokers are more susceptible to infection.  

Also, smokers are more likely to transmit their infection and this is for two reasons.  First of all, I mentioned before that smokers are more likely to develop more infectious forms of tuberculosis, so smear positive tuberculosis, cavitary tuberculosis, this is more severe forms of tuberculosis that -- that when -- that when they become diseased and infectious, that they’ll spread more bacilli into the air. But also, smokers are more likely to cough, and coughing is one surefire way to get the bacteria out in the air.  

Okay, so thinking about how smoking might affect risk of infection.  Well, okay, smoking has all sorts of impacts on immune response, making it more likely that if someone is infected, they’ll progress to disease.  Smoking -- and for the same reason, smoking also makes it less likely that an individual who has tuberculosis disease will recover naturally -- on their own, without treatment.  But it also might affect treatment-seeking behavior in ways that we don’t fully understand.  Smokers -- smoking -- smokers are more likely to cough, as I said before, and coughing is a major -- is one of the most important symptoms of tuberculosis, so it’s possible that their smoking may mask the symptom, delaying diagnosis.  But also smokers are less likely to comply with treatment, meaning that they’ll remain infectious longer.  So these effects will -- these impacts will affect this rate of flow from -- from the tuberculosis state into the latently infected state. 

Okay, smoking also affects the TB death rate.  Smoking kills, for reasons other than tuberculosis.  This is widely known and established, and in a way this is good for tuberculosis.  In a morbid way, this is good for tuberculosis because if someone is infected, latently infected, they may live less long, making it less likely that they’ll progress to disease later in their life.  And you want to capture that effect.  Okay, and lastly, smoking may affect the TB death rate and -- and the direction is unclear just because we really don’t have enough evidence about this.

So, what I did, was I tried to -- just to summarize, I tried to come up with a list -- a comprehensive list of all of the ways in which I think that smoking can specifically affect TB dynamics, and I came up with a very large set of hypotheses about all of the different combinations.  And we have some information on some of these, and we were able -- on some of these specific impacts and so I was able to create smaller bounds around them, and had less information about others, in which case they got larger bounds.  And what I did was, in my TB transmission -- so I came up with a set of -- series of hypotheses, and then I reproduced each hypothesis in my TB transmission model to try and see whether that specific hypothesis could reproduce the relative risk values that were estimated from the meta-analysis in the literature.  Is it possible that this specific hypothesis about the mechanisms can explain the relative risk values that we’re finding in the world.  Oh my gosh, I’m sorry. I’m really running out of time, so let me go quickly through.  Okay. 

So, this is one use of the model, which is -- which is to try and -- try and integrate various sources of information, to try and learn lessons about risk factors.  Okay, so let me talk about the impact assessment very quickly.  Traditionally, in epidemiology, if we’re interested in -- in estimating the population attributable risk, the percentage of a disease that would not happen if it weren’t for -- if not for a risk factor, if a risk factor did not exist, this computation takes into account the prevalence of that risk factor and the relative risk values, that’s all.  Only the direct effects of -- so in this case, smoking on tuberculosis; the fact that if I smoke I’m more likely to progress to disease. Okay, but in this model I’m able to capture -- okay, and if you -- if you estimate this population attributable risk this way for smoking, given a two point seven five -- a relative risk of developing TB of two point seven five and a relative risk of dying of TB of two point four, you would conclude that 34 percent of TB disease and 30 percent, 29 percent of TB deaths, are attributable to smoking.  

But in the model, you’re actually capturing these indirect affects of smoking, the effects of contagion, the fact that smoking affects TB dynamics in ways that increase overall transmission. Smokers are -- they develop more infectious forms of TB.  You’re capturing these indirect affects.  And what I found was that -- that actually, 60 percent of TB disease -- incident TB disease and 57 percent of TB deaths don’t happen if it weren’t for smoking.  So if I run the model with smoking, and I should say that it’s a 29 percent smoking prevalence is used, which is the average in developing countries.  If I run the model with 29 percent smoking prevalence, and then I run the model with no smoking, that -- there are 60 percent more new cases of TB disease and 57 percent more cases of TB death.  And what I found absolutely fascinating is, if you restrict this analysis and you focus separately on people who smoke and people who don’t smoke, that these indirect effects of smoking are responsible for a substantial portion of TB disease and deaths among the people who have never smoked, so -- so you know, we’re all familiar with this -- with the effects of second-hand smoke, and the idea here is if I smoke and you’re exposed to my smoke, that affects your health.  But what I’m talking about here is, if I smoke, there’s more TB in the population, and TB -- and TB is transmitted differently, and that affects -- it affects your health.

Okay, policy implications, which I’m just going to show you some pictures very, very quickly.  I took a case study for India because we had a lot of data to work with, and -- let’s see what I want to cover here.  So we know a lot about smoking prevalence in India.  We know a lot about this association between smoking and TB in India, so we -- so we are -- feel very confident that these relative risk values are true in India.  And just to give you a quick background, smoking prevalence in India is much lower.  People don’t start smoking until older, so between 20 and 25 years of age, and 39 percent of men currently smoke, and only three percent of women.  So all together, the smoking prevalence among individuals over age 15 is only 16 percent.  So this is lower than the global average.  So the pictures I’m going to show you, keep in mind that smoking is a less important risk factor in this population.  Okay.  

So, the questions that I really wanted to focus on here are what will happen if tobacco control is not -- if tobacco is not paid attention to in India, and second, what will happen to population level TB outcomes if tobacco control is paid attention to?  So, in India they’ve set up some targets -- some targets for -- for what is possible, in terms of controlling tuberculosis.  And so I sort of -- I programmed this into my model.  Okay, so very quickly, this is the TB incidence rate that my model projects in India.  If TB treatment rates remain at their current level, and if smoking prevalence remains at its current level, this is what can be expected.  Okay.  The next graph shows you what happens if smoking initiation rates increase.  So for instance, if women start to take up smoking -- and the takeaway message here is that this is bad.  It gets us on a completely different trajectory in which in the long run, TB -- the TB incidence rate is increasing rather than decreasing.  So we’re sort of losing a lot of the good that we’d done through previous dots expansion.  Okay.

And then I wanted to try and get a sense of what feasible TB control policies might do to long-term TB outcomes.  And so in India, what I found was that if we can reduce smoking prevalence by 15 percent between now and 2020, then in the long run -- which we care about for TB elimination -- we can pull down estimated TB incidence rates by 13 percent.  If we reduce smoking prevalence by 20 percent, we pull -- sorry, by 25 percent, we can pull TB -- estimated TB incidence down by 20 percent.  If we just continue to enhance dots programs as we have done in the past, this is a small increase in dots expansion, the projected outcome -- I’m going very quickly through this, and I’m very sorry, but the bottom -- the point here is that we can begin to compare policies that involve smoking as a modifiable risk factor to traditional TB control policies to get a sense of what the potential impact is, and I see this modeling work as a way -- as a way of helping to generate ideas about where we can intervene; what the potential of interventions might be around -- involving smoking.  

So, thinking about controlling smoking, first of all, but also treating smokers as a high risk group in contact investigations and whatnot.  We can get a sense of how much of an impact these types of policies might have on long-term TB outcomes.  And then I think that what is really important to do is to go in -- to go back with this information and try and get a better sense of what the cost is, to instill -- to take on these policies and try and compare things.  So the model I see as a way to sort of bounce ideas -- policy ideas -- off and really try and figure out the best way to move ahead.  So I’m sorry this is rushed in the end, but I hope that you’ve gotten some sense of this project.  And…

[applause]

Male Speaker:

Thank you, Kristin.  Our next speaker is Mercedes Pascual, and she received her degree from -- joint degree from MIT and Woods Hole, and I think is doing some of the most exciting work that can be found, which couples complex systems and important public health problems.  And I’m sure you’ll agree after you hear her.

Mercedes Pascual:

Let me see if I know how to operate this.  

[low audio]

Mercedes Pascual:

And this works?

Male Speaker:

Yeah.

Mercedes Pascual:

What is this?

Male Speaker:

Just do this.

[low audio]

Mercedes Pascual:

Salud.  Okay.  So, I think I have all the controls here.  I’d like to start by introducing my coauthors.  They are here in the room.  I’m -- they could give this talk, so Katya Cole [spelled phonetically], who was a graduate student of mine.  She’s now a post-doc and she’s moving to Duke with a position pretty soon.  Sarah Colby [spelled phonetically] and Luis Fernando Chavez, two current graduate students.  Both Katya and Sarah have been very active in the complex system -- complex systems group here at the university.  

Anyhow, I was given this title, Applications to Ecology, which I interpreted freely to mean the population dynamics of infectious diseases with an emphasis on the environment.  And I thought I would begin by showing you some of the patterns -- the microscopic patterns -- that we would like to understand, and give you a flavor for the questions.  The first time series is for cholera in Bangladesh, where the disease is endemic.  This is a surveillance program in a rural area south of Dakar.  You see here a number of cholera cases for different strains.  Since 1966, over time monthly, and you have seasonal epidemics, but clearly the size of outbreaks vary from year to year, and what we would like to understand is this inter-annual variation, and can we predict it?  Can we, for example, develop early warning systems?  What is the role of climate variability?  

The role of climate also arises in the context of climate change.  In some very contested discussions about what is driving the increase in malaria -- the size of malaria epidemics -- in transition regions in highlands and in desert fringes.  This is from an African highland showing the increase in the past few decades.  And here, of course, we have to understand the fast dynamics of outbreaks in the context of long-term change.  Long-term change also arises as a result of evolutionary change of the pathogens, and that is illustrated by inter-pandemic flu, where also we see variation in the size of epidemics and we can ask, “Well, what is a way to understand this with [unintelligible]?  What are the limits to prediction?”  So, I had to have a slide that has my preferred list of properties of complex systems.  We have so many of these, so I’m not going to take a lot of time.  I just wanted to mention, of course, nonlinear interactions.  We heard about nonlinear -- non-equilibrium behavior. 

I added human variables because one of the problems is that we often have to understand interactions that involve variables that we don’t measure, and sometimes we don’t even know.  So we don’t know the dimensionality of these systems.  We heard a lot this morning about distributed interactions and the large number of components in networks, also, the processes of different organizational scales and adaptive behavior.  And what I thought I would do today is to show you very little pieces of some case studies for cholera, which will emphasize the part on nonlinear interactions and hidden variables.  I will also very quickly -- there is no time in the time I have, so I will say two words about malaria and then move to some recent work, primarily by Katya and Sarah, on inter-pandemic flu that emphasizes these two last points and is more truly an example of a complex adaptive system in the way we have been discussing today.  So, I have here my preferred quote from cholera.  Some of you have seen it already, but it comes from this famous book on cholera.  

What I like about it is this idea that you could sort of deal with the epidemics by using cannons, and this had to do with the superstition that gunpowder purified the atmosphere, so there was already an idea that perhaps the atmos -- something about the atmosphere mattered to cholera.  So that was, to me, a bit reminiscent of this hypothesis about the role of the El Nino southern oscillation, which was formulated after cholera returned to South America through Peru, in ’91, ’92, after being absent from South America for over 100 years.  This happened to be an El Nino year, and this observation prompted Caldwell, Epstein, and others, to hypothesize that El Nino matters for cholera.  But this was a single event, so you couldn’t really test this hypothesis.  

We therefore went to the place in the world where we have the longest records, and this is the delta of the Ganges and the Brahmaputra in Bangladesh and India, where we have many historical records.  And microbiologists have shown, repeatedly, that vibrio cholera survives outside the human host in some of these aquatic environments.  And this, of course, is a disease -- it’s a water-born disease in an environment where people interact continuously with water.  This is a fecal-oral transmitted disease we have here, some latrines, this is a fisherman, and so on; it gets worse in cities such as Dhaka, where at least two thirds of the population do not have proper access to clean water.  So, the hypothesis goes, if you have some environmental factor that drives the population dynamics of the pathogen, the bacterium in the environment, we have higher outbreaks.  Why was this controversial?  

Well, because people that deal with disease models very well know, and we have seen an example -- very clear examples of these yesterday -- that diseases are natural oscillators.  We saw the example of the 1918 flu, with two peaks, and the basic mechanism that drives these cycles is the depletion of susceptibles, the epidemic turns around, it runs out of susceptibles to infect, and it has to wait until we replenish the class of susceptibles through birth or recruitment.  So, here we have a natural oscillator.  I had to have a picture of the first such patented clock that functioned with a force pendulum to remind myself that it is more complicated than that, because in fact, most of these diseases have seasonal transmission.  So, in fact, we already have at least two cycles that interact, the natural cycle of the disease, and seasonal transmission, which anyone with a computer these days can show, will generate an array of behavior depending on parameters.  All the way from simple annual cycles that repeat this seasonal forcing, to cycles of longer period where larger outbreaks repeat, for example, every three to four years, and chaos.

So what is the problem with this?  Well, then if we see some data where we have some interannual variability with characteristic periodicity, we do not mean necessarily to invoke some forcing, something like El Nino, to explain these patterns.  And the problem is: how do we separate from data these two alter -- presumably alternative explanations?  So what we tried to do in our work was to start with data for infected cases and so on, and see if we could separate, disentangle the effects of forcing from those that have to do with intrinsic cycles of the disease.  And we developed different approaches to do this.  The trick is to do this also in the presence -- well, in the absence of data.  That is, when we have these [unintelligible] variables, it would be very nice if we had measurements on susceptibles, recovered and immune individuals.  In the case of cholera, we couldn’t even come up with a good idea of how long immunity lasts.

So, the trick is to work at this interface of some of these models and some of the statistical techniques to deal with these data, to -- to infer what may be going on.  So, we developed different approaches, and I wanted to show you the result with one of them.  I will not go over this particular approach, which relies on a model like the one you saw before for tuberculosis and so on.  And, essentially, what you do is you have your observed patterns for cases.  This allows you to reconstruct the variation in time for susceptibles, how immunity decays over time -- of course these two things are very highly related -- and then, third, how transmission rate varies over time.  A different temporal scales, either seasonally longer-term variation, and then also what the model does not explain, that must come from some outside forcing.

So, over here, this variation in transmission rate can then be examined for vari -- for associations with climate, for example, or any sort of possible factor of interest that is your exogenous factors.  And we have this simple representation of endogenous dynamics.  We applied this to cholera, of course with data -- it always gets more complicated than you initially wanted, so we had to deal with the different -- in this case these different strains are different biotypes.  We essentially were interested in the -- the dominant one at the moment, but we had to use both immunity and cross-immunity to another biotype.  I will not, here, describe these particular results, which are in a paper outside.  I will just mention that, in fact, we found evidence for an effect of El Nino, even when you take into account these intrinsic dynamics, with, sort of, delayed response of nine to twelve months.  We found evidence for an effect of rainfall and flooding, but more importantly we found that there is an interaction between disease dynamics and climate forcing so that, in fact -- this is an interaction between immunity in the population and climate forcing.

And I thought, “What I’ll do today is I’ll illustrate this point with, sort of working progress on predictability and forecasting, since there has been a lot of argument on whether we should consider this issue of prediction.”  I will just use it here for illustrating the interaction and make a few comments about prediction.  So what I did was to take the model at any given time, simulate it forward, and then with a, sort of, prediction time of one year, in this particular case, and compare it with data in the past -- the observed data to assess predictability, and also consider data that we had not used to feed the model.  This is a true test, it’s about predicting the future, after all.  So that will be a bit harder.

So what happened?  Well, this is a slide that shows you something about interaction.  In the bottom panel you see a measure -- this is an El Nino index where you have sea surface temperature anomaly in a region of the pacific.  When this goes positive you have an El Nino event, marked here with the arrows.  And you see cases now starting here in 1985 in black, for El Tor.  And in blue you have the prediction twelve months ahead of the model without ENSOL.  You see that it misses -- it misses some of the main peaks.  Clearly it misses.  And then, the red is the model that then incorporates both disease dynamics and ENSOL.  And the point I wanted to make in this particular example is that two events of similar size, in climate, have very different responses in terms of the number of cases.  

Interestingly, in ’86, ’87, the disease was in a refractory state to climate because we had had previous outbreaks that had built immunity in the population, including epidemics of classica.  So that, here, there are -- you don’t have enough susceptibles for a response, while when immunity goes away, for enough people, we get this larger response.  The model is still obviously not perfect.  Let me show you, how well do we without the feed data.  This is just showing, if you can see over here.  I don’t -- I’m not sure you can see very well, but there are two bla -- the red is, again, with ENSOL.  And without ENSOL, we haven’t had big events during that time, so the difference between the two is not very important.  What matters from a practical point of view is that we would have predicted ahead the lack of an extreme event defined here as above this percent -- 90th percentile.

So, at least, we have to put this now, obviously in a stochastic framework to put some uncertainty around these predictions, but I wanted to make the point that even for these mean predictions we have to -- we can do relatively well, but we have to consider -- we cannot do it basically using climate.  And we cannot do it just with an epidemiological model.  So there is this interplay that is highly dynamic, and depends on the history of the population.  So that is one example -- let me see.  And I have this picture, here, to just make a comment about the discussions yesterday about prediction.  So we are looking at the phenomenon of warming primarily in the pacific, although everybody knows these days that it is that -- and so is a driver of global climate viability, and we are looking at cholera over here.  

So, a number of times when we present this work people say, “Well, you should be using -- you should be finding out more about mechanisms, regional mechanisms, that sort of mediate this interaction.”  And I agree that it would be good to know; we are doing part of that, but the question is: would it be better for prediction?  My guess, my conjecture, is that the answer is probably not, that you have -- I showed you after a lot of these talks about these very complicated models -- may seem like a fairly simple system, but it may be just because of the level at which we are -- the spatial scale and the level at which we are describing it.  The different events of El Nino act through very different pathways, and the only reason we find some regularity is that sometimes that what is regular is that some pathways always get activated.  

And if we wanted to model these or predict these at a sort of more mechanistic level we may, in fact, lose our ability to predict.  That’s a conjecture, but the trick is that I think part of the goal of this modeling exercise should be defining the limits to prediction and seeing how -- whether we can identify variables that activate some of these very complicated pathways that we saw yesterday in some of these public health responses.  So, I thought I would tell you about malaria, but in the interest of time, I will just make a very brief comment about it.  This is another example of using dynamical models to assess response -- potential response to change, and change in the environment.  So what we used here is a mosquito population; modeled the mosquito vector to ask whether half a degree in temperature was, in fact, biologically significant.  

We can argue about statistical significance in these records; there is evidence from the statistical point of view that in these highlands there has been an increase in temperature, and the question is: does it matter for the disease?  The dynamical response to that is, I think, quite interesting, because what we found was that the dynamics of the mosquito vector could greatly amplify the difference in temperature that you observe just in this environmental variable.  And I will not go into this -- into details about that point; there is a paper outside.  We did it just with the abundance of the vector; I think the more interesting question is about infection and levels of the disease, but that’s a more difficult question.

The last comment on malaria -- we talked about very multi-factorial problems; in fact, claiming that the changes we see in these transition regions in highlands and desert fringes are purely due to climate is simplistic.  But so are these arguments that get stuck into: is it drug-resistance versus is it climate change?  Because perhaps we should be asking how these drivers interact, and an interesting question that models can help us address is, for example, whether under increased transmission we should see the fast evolution of resistance.  This is something that can be done with theory and models and perhaps would be an interesting exercise versus arguing whether it is one or the other.

So, I will now move to a more detailed description of this work, which Sarah or 

Katya should be presenting, so if you have hard questions, you can ask them; I will just try to summarize.  This is another example of the interplay of pathogen evolution and disease dynamics, here in inter-pandemic flu, due to the ability of the virus to evade the immune system.  So the immune system produces antibodies in response to two main molecules on the surface.  I cannot pronounce them well:  Hemoglutinin and neuraminidase.  I think the literature calls them H and N for a reason.  You can classify these subtitles H3, N2, and so on.  An interesting pattern, one that has led to a very interesting question, is seen here in the phylogenetic tree of the genes that have to do with the relevant antigens on the H molecule.

In this tree, of course, you see the trunk with the sort of evolutionary drift of the pathogen, but you see these very short branches.  So the question people have been asking -- that’s an ecological question, perhaps, but that has consequences for, I think, vaccine development -- is why is at any given time the diversity of the pathogen fairly limited?  So that if you look at a given time if the branches were longer, you would have more coexistence, and you don’t have that.  So that’s a question at the micro-scale in this system.  The different colors correspond to different clusters defining the – in a very interesting paper by Smith and colleagues, where they show that with time, you will see that the distance between -- the genetic distance between the strains will grow continuously, but that the antigenic distance that matters for production of antibodies is in fact discontinuous and clustered, so that many sequences basically give you a very similar phenotype.

I have ten minutes.  I will do this.  So, let me try.  So now, you have this observation, and does it matter at the macroscopic level for the population?  Well it does; you see these stars correspond to new clusters arising, and that’s often when you see the largest epidemics.  So the question I like to ask is, “How are we supposed to model this?”  One way to do it in the literature is to use an SIRS series of compartments.  Is that good enough?  So, that’s a question.  Ferguson and colleagues, in a paper in Nature, used an agent-based model to couple these two scales in fairly complex models that describe the evolution of the pathogen.  To get this -- this restricted diversity they had to postulate this sort of -- how was the word -- transcending generalized immunity so that exposure to one strain gave you protection against other strains.  

That -- this model has properties that are not consistent with this observation of the discontinuity here in the phenotype, so Katya had this very interesting insight, which was to use neutral networks as a way to map genotype to phenotype, so that the key problem was how were we mapping the variation at the genetic level into variation that mattered at the phenotype level.  Traditionally this is done in all models by looking at sequences, calculating some sort of distance, and saying, “Well, the degree of cross-immunity is just a function of the distance.”  But that is inconsistent with a number of observations; also you can find that in detail in the paper.   

What I decided to do was to show you a figure written on a commentary of the paper because it’s a very interesting representation of a complicated model.  This idea of neutral networks which come from complex systems; they have been used in the evolution of protein shape; they have been used in the evolution of RNA by Fontana, Schuster, and others.  I think what is new here is to couple that with some population dynamics of disease.  The picture is as follows: if you live in this space you are a sequence, like a genetic sequence; a particular strain.  If you are in one neutral network you have a similar phenotype, so that the immune system sees you as almost equivalent.  Almost, I can say.  It’s not perfectly neutral, but almost so that the sequences are mutating, they are just drifting and looking for -- in a sense, exploring this space of sequences.  

But occasionally you can have one change that connects, that finds another network.  When that happens you have a very distinct, sufficiently distinct phenotype that is recognized as a different antigen.  At that point this -- on this new network, this virus has many more susceptibles available to it.  And so, it can out-compete the others, due to the dynamics happening up here, and it will lead to extinction of the, sort of, its predecessors.  After that there is more exploration, and then the cycles of exploration and innovation.  You can see that there is a period of strong selection when this new type arises, and then periods of, sort of, what could be, in terms of phenotype, fairly static change.  So, in these models, what is very interesting is this combination of, in a sense, neutral drift and selection, not as opposite explanations for evolution, but as part of the same, in a sense, the same process, so that one enables the other.  And I think that’s a fascinating idea that comes from these neutral networks.

Another fascinating idea in these models, I think, is that we talk -- we heard a lot about emergence and bottom up effects when you look at these multiple organizational levels.  But you can see that in this view of the word, there is emergence in the sense that what is happening down here at the micro scale has an effect on the population dynamics; for example, how many susceptibles are available and so on.  But there is also feedback because selective pressures on the micro scale will very much depend on the population state.  So this is back and forth and it’s not uniquely [unintelligible].  So, there is this emergence modifying the future of evolution so that is the interplay of what -- you can see the interplay of the dynamics of evolution and the dynamics of ecology at another level.

I’ll close by saying that this model produces, and it’s the only model -- at least, I know -- that produces the set of observations, at least qualitatively, that we have for flu at those two levels.  The character of the phylogenetic trees with the short branches, without invoking any [unintelligible] and immunity, the sort of larger peaks as you get to new clusters.  And it produced a prediction that was not the way we were thinking about diversity, which is that there isn’t just limited diversity, there is a pattern of [unintelligible] when a new cluster emerges, then diversity afterwards increases.  But then, as another one comes and gets everybody extinct, you get a decrease in diversity.  So there is this stasis, and this punctuated selection happening.  And this is supported by observations. 

And this leads me to the, sort of, closing question.  While we have this complicated model that is a complex adaptive system, I don’t know if it’s an agent-based model.  Katya doesn’t like to call it an agent-based model, so I will not.  But the question is, “Do we need to model interpandemic flu like this?”  I mean, it’s nice to couple this level, understand the mechanisms at some level, but if we wanted to model just the population dynamics level, fit time series, try to do predictions about the emergence of new clusters.  Should we do it at this level of detail, following these sequences and so on?  And I think that one of the roles of these models -- not the only role, but one -- should be when -- not when these details matter, they obviously matter -- but given that they matter, how can we simplify the models?  Are there simple models that are consistent -- this the end -- that are consistent with these complicated dynamics?  So, do the details matter to the big picture?  

And I think -- it got stuck, it like these things -- and I think, again, that we have these great tools to ask about simplification, but that should give us some idea about cases where we don’t know the details.  We heard a lot about networks.  What about when we don’t know the networks?  Can we always measure them?  I would say that for many of these applications, no.  And if I try to -- and you can say, “Oh, the model for cholera ignores all the spatial heterogeneity.”  No, it didn’t.  In fact, it used a trick to barometerize, implicitly, the effect of spatial heterogeneity.  So the effect of heterogeneous random mixing, implicitly, in a model that looks like an old type of model, but it’s not saying, “We have random mixing.”  It’s just saying, “We can represent it implicitly for the purposes at hand.”  And I think this is an important question.  

So, let me just thank again my coauthors, some collaborators, and then some sources of funding.

Male Speaker:

Thank you, Mercedes.  We next move to Jim Koopman.  If in epidemiology there were an early adopter of this kind of thinking, it’s definitely Jim, who has been arguing for the importance of systems thinking in infectious disease epidemiology for a number of years, and has certainly led many people into thinking that way.  Jim?

Jim Koopman

Thank you.  I’m going to talk about complex system analysis in infectious disease.  I’ve dedicated myself, for some time, to developing theory that serves public health, and specifically about systems theory that serves public health, and especially complex systems theory.  And I’m really pleased to be working in the Center for Advancing Microbial Risk Assessment, a highly multidisciplinary center with -- across multiple institutions with many different disciplines, especially environmental and microbiology.

The broad themes that I’m going to deal with are: the analysis of infection transmission systems history -- and it’s really under rapid change now and moving much more to complex systems approaches and purposes; I’m going to deal with the philosophy in causal system analysis methods of infectious disease epidemiology that could serve other areas of epidemiology -- I’m afraid my talk is fairly oriented toward epidemiologists, but I think it should be of interest to broad complex systems scientists.  And then I want to talk about something that guides a lot of my research focus; that is, inference robustness assessment and how that provides a cornerstone to developing theory that serves public health.

With regard to the history -- indeed, within epidemiology there was very early on a systems focus, and the consequences of feedbacks, interactions between individuals, things that most epidemiologic analysts still today assume away.  They assume away feedbacks; they assume away interactions between individuals.  The initial thrust, when -- before the computer age, and actually when computers were simple, when the field was being largely developed by mathematicians -- was to find the essence of the dynamics through simplicity.  And, of course, when we look at system dynamics, there’s always virtue in the simplicity.  But, we never focused on informing public decisions.  It clearly requires a more complex systems approach.

So, here we have epidemiologists generally focus on, you know -- they have -- they follow a bunch of individuals.  They characterize those individuals by outcome variables and by exposure variables.  And they do look for risk factors in the individuals.  And, for the most part, they assume that this is the relevant plane of analysis, even if they’re gathering data from the other important planes of analysis, the network plane that connects individuals, of course, which Mark talked about.  So, the basic parameters, a lot of the basic parameters of transmission system analysis, lie in this interaction between individuals.  And the effects of those may be observed by looking at this relationship between exposure and outcome in individuals.  But that doesn’t give you a good idea of what’s happening within the system, even though these network relationships are determining what’s going on here.  Assuming the network effects away as a traditional risk factor, epidemiology does -- can lead to a lot of serious error.

So what are the -- so, systems epidemiology didn’t do that.  But systems epidemiology made a lot of simple approaches.  They assumed simple homogeneous states, like the FCIR model: the mass action, above all, that assumes instantaneous contact, and instantaneously thorough mixing after every contact; a highly unrealistic assumption.  Abstract contact that’s mediated by transmission and is not specifying modes, and CAMRA -- our big focus is on specifying how infection gets from one person to another, and how that can really dramatically change how you think of contact networks when you start taking that into account.  If you go ahead and just define contact as somebody talking to somebody else, that’s not going to get you to a very realistic infection-transmission network.

So then look at the purposes.  And I orient my purposes very much, very strongly toward advancing the science.  I want to advance the science of infection transmission analysis.  So the very first purpose in a lot of complex systems analyses are just aimed to getting insights at -- but really we want to carry that on to developing theory expression, so that we build theory and create base for others to build new theory.  You build theory for old theory for the most part.  And then predicting consequences of action or inaction, and we have to get to the point -- and I’m really happy to say that we’re really moving down in the direction here in epidemiology of using models to design informative studies, and using models of dynamic systems of complex adaptive systems even, for analyzing data to estimate system parameters and predict the actions of action-consequences.  So really, only purpose one can be pursued when we make these really radical assumptions of homogeneity and mass-action assumptions.  

There was a big move -- when I started working with Carl was in the time when there was a big move to relaxing all of these homogeneity assumptions.  There was -- began to realize, people began to realize, in the 1980s, early 1980s, that we had to take into account something more than mass-action, and then begin to change those.  And then Mark talked about fixed network models, and he mentioned that, in fact, for a lot of situations, those fixed-network models -- even though they may change the kind of assumptions that you have when you have mass-action assumptions -- the fixed-network models are often as unrealistic and can be as problematic as mass-action assumptions.  The idea that people are continuously in contact and they continuously have the same risk is just unrealistic for a lot of things.

So we have to go to individual- and agent-based models.  And thankfully -- Mark talked about Eubank models -- we have a big project with Chris Barrett and Eubank, in fact, modeling the Wasatch Front in front of Salt Lake City, at the level of 1.5 meters, 6 million people, tremendous computing power able to do that sort of thing.  But then you add all that detail; if you don’t have the fundamental elements right, if you don’t know -- why have all that computer power for so much detail when it doesn’t advance your scientific purposes that much?  Especially given limited analyzability of such massive models.

So you have to think about simplifying assumptions about contact processes and modes of transmission that invalidate, for the most part, the other purposes that I talked about before; predicting the consequences of action or inaction, designing studies, and using models to analyze data.  So a variety of new model forms that can work together in a new statistical estimation purposes, make these purposes 3-5 more feasible.  So we work with deterministic compartmental models that make the mass-action assumption; they assume infinite population, the continuous models.  Stochastic compartmental models -- at least they relax the infinite population assumption.  The network models that assume fixed ongoing linkages, what they do is they, as I said, make a lot of other assumptions.  Our big focus in CAMRA is on these environmental transmissions system models, and above all these relax the assumption that people don’t even concentrate on very much, of instantaneous contact.  

In fact, contact can occur over time and over distance, because one person contaminates the environment, and not every person picks up that contamination from the environment, and then, moving onto individual-based models that can relax a lot of assumptions, but thinking of how to do that in an organized way.  So, what we focus on is trying to integrate these kinds of models into an analytic framework that enables us to focus on public health purposes and focuses on the inferences that we want to make.  So, we call -- we try to make our focus on inference robustness assessment, ensuring that realistic relaxation of simplifying models assumptions will not change inferences in order to focus on things that are going to serve science, or serve public health, advance theory; you have to think that the theory has to have something to do with realistic situations if you’re going beyond just getting the insight into dynamics phase.

So, the way you should proceed is using the simpler, more unrealistic models to make needed inferences, and then assess the robustness of the inference to the specific assumptions, not only due to the form of your model in one model type or another, but to the -- that are intrinsic to the type of modeling that you may be doing.  So that -- you need to be able to handle these different kinds of models in order to make the inferences.

So in order to make epidemiology serve public health, we say, “Choose inferences about important actions.”  If you want to make epidemiology a sort of science, choose inferences about important theory.  Clarify the causal assumptions in models used to analyze data and to make inferences.  Then theoretically explore the potential assumptions to alter those inferences, and see how they -- the potential of the assumptions to alter the inferences.  

And then when inferences from causal-model based data analysis is sensitive to assumptions, define the data that you need in order to select -- in order to overcome that sensitivity.  And of course, at the same time, you have to develop the estimation methods that [unintelligible] take place.  I really think that we’re entering an era where this kind of thing is much more feasible than it used to be.  Part of it --and I’d like to say epidemiology can move in this direction, partly because epidemiology is thinking more causally -- Tom, the other day, made a comment about most epidemiology being immunized by Judea Pearl.  But I think that, in fact, there are enough advances in directed acyclic graph theory so that people start thinking about causal analysis in a new way, but they just don’t do the system part of it.  In all of these different model forms, part of it is advances in computing, part of it is advances in software, part of it is advances in algorithms.  

All of these different model forms are advancing greatly, and fantastic new potential for gathering different kinds of data under different situations.  So if we want to think about moving areas, or how other areas can proceed, begin just thinking about the dynamics of processes, of causal processes.  And a lot of different areas of epidemiology are beginning to do that, outside of infectious disease epidemiology.  Then model the causal systems with feedbacks.  You know, there’s a misconception amongst many of those who are promoting what they call “causal analysis in epidemiology” that directed acyclic graphs within nested structural models can handle this situation’s feedback of realistic systems.  That ‘s not the case, and you really do need a systems analysis to get a total systems approach.

The next thing is really, really central.  Epidemiologists use data models, for the most part, but they use data models like the things that they take off the shelf for [unintelligible].  They use those data models, ultimately, to make causal conjections, to make policy decisions, to make theory inferences, and if you’re going to do that, you have to think of all the assumptions that are affecting the inference that you are making, that you’re -- out of a particular causal analysis.  So you have to clarify the causal assumptions of those data analysis models.  And then I -- then, you can adopt the inference robustness assessment, and I think nowadays we have these really great new statistical estimation methods that make a real difference.  

In standard epidemiology, we really have to start relaxing the assumption that one subject is independent of other subjects; there’s no interactions between individuals, there are no system feedbacks, or that the system generating the data is at equilibrium.  A lot of social epidemiology, for example, gathers variables like social support, social stress, that have to do with interactions between individuals.  You have to realize you have to analyze that data in the network plane between individuals and not in the plane that’s just relating subjects to outcome.  So, some of the very key progress made from doing this sort of thing is well recognized now that-- in most infection-transmission systems.  
The indirect effects can, and as you begin -- as you understand and gain expertise, you see where indirect effects are largely greater than the direct effects -- that is, the effects directly on individuals.  But, above all -- and we saw this in a lot of the -- in Mark Newman’s presentation of the -- of the TB -- you saw it in Mark Newman’s presentation of SARS, in the talk that we just heard about smoking and TB.  Some of the biggest effects are on contagiousness.  Above all, that’s what we have to focus on; contagiousness.  Epidemiologists, in their classic study designs, don’t pick up that at all.  We need complex systems models and complex systems approaches that take the whole system, can use much more complex data, in order to detect contagiousness effects.  

The other is that the strongest individual level risk factors for infectious disease are, are -- okay, so we have to take those across individuals, as well as the issue of contacts between individuals, [unintelligible] contacts.  So here we are, you know, transmission systems science has been down in the shadows.  We’d like to get to the bright, shining light of the strong science, but we’re down in weak science dimensions, both on the scale of how much validated, quantitative theory we have about the -- the system, and also, our ability to observe repeated units.  So we’ve got to get somehow from here to here.  Well, we’re -- we are making progress; advancing a lot of theory.  But how can we get better data?  One reality that we’re dealing with when we’re looking at epidemics, we’re looking at one realization of a stochastic process.  So we need to find ways that we can get the most informative information when we recognize that we’re looking at one realization of a stochastic process.  

There are two tremendous new data sources in CAMRA work focusing on environmental measurements.  These -- we’re going to get volumes of data that’d be far more informative about transmission systems than anything we’ve had before.  And then I’m going to talk in a minute about the genetic relationships.  So, in order to get to this -- our validated thing -- we have to find -- identify informative and repeatable observations, as well as developing the theory.  So, HIV.  A long time ago, Carl Simon and I started looking at HIV transmission.  We realized the importance -- John [unintelligible] was the strong force working with us.  Looking at the role of early HIV, we showed that it’s very important in the early stages of the epidemic, and that’s all -- well, except that there is high transmissibility during the early stage, but for a long time, the -- the system role of early infection was not accepted.  We had very poor measurement of system characteristics.  

HIV has a high peak of transmission early on.  The issue now is, when we’re more in the endemic state, what is the role of primary HIV infection transmission?  And what we’re -- what we can say is that the system effects of the HI -- transmission are strong and interact strongly with systems confirmation.  So we have to take a complex systems approach to answering this question.  I was thrilled, recently, in April of this year, in a period in JID; a tremendous study from Quebec -- in Quebec they’re getting -- approximately 70 percent of cases are being diagnosed early in infection.  Quebec long resisted any HIV reporting, and this may be part of the reason why they’re having such success at it.  But the -- the key thing is there was a virologist collecting all -- you know, all these specimens, looking at all the sequences, aligning them by hand, looking at them by hand with a simple Excel file, looking at all the risk factors, thinking about everything that goes on.  

So, you know, the -- about 4,000 cases that she had sequences on -- she knew each one of them individually, in terms of getting the data and put out the pattern of sequences.  So we built a simple little model -- this is all work in the last couple weeks -- of higher risk population and lower risk population.  One of the big realities of risk behavior over time is that people change their risk behavior.  I really realized this when I did HIV counseling and testing.  Everybody has some period of craziness.  Nobody has a really continually sustained period of craziness in their life.  Not nobody; some people do, but you know.  And so we just built this simple model; a simple individual-based model for infection transmission.  Jung Hun Kim [spelled phonetically], my doctoral student, did the construction.  

And then we -- we divided the high-risk areas into four different levels of different risk.  So, at the first level, it’s like we have one big homogeneous population.  At the second level there is -- you know, we’re increasing the new partnership formation rate as we go down the different levels, so that we’re increasing the differences between the high-risk stage and the low-risk stage.  And then we take the Waver transmission probabilities.  Now if -- the Waver transmission probabilities are about -- in this relationship -- a little less than one per -- one percent in the first six months.  But a lot of that, by the way, is concentrated in a very -- narrower period of about three weeks, and during that three weeks there are times -- there’s probably times that you’re close to a hundred percent transmission, so that when you spread it out over three months it goes down.

So -- so, what have we done here?  We’re getting -- we’re setting these different parameters, so that at the different settings of these four different cases here, we’re getting 15 percent prevalence and 40 percent primary HIV infection transmissions.  Then we look at patterns of clusters, we look at the genetic trees, and we look -- how many -- how extensive the genetic trees -- or the transmission trees, where transmission is from one person with primary infection to another person with primary infection.  And you can see that even though all of these have 15 percent and 40 percent, the pattern of clusters in our simulations differs quite a bit.  Now, we collected data for this over -- out of our simulations over very long periods of time.  

The data that they’re collecting in Montreal is really -- so it’s collected over -- you know, they’ve been doing this over a shorter period of time.  And you can see very clearly this pattern of clustering where you have this decreasing -- and then you have these few clusters with fairly big numbers, starting out there.  So, this is real complex systems data.  How are you going to analyze this kind of data with a standard statistical tool?  But this data could be really informative as to where you are on these -- you know, on the scale of this sort of phenomena.  If we have two sorts of phenomena taking -- increasing the -- the role of primary infection, that is, we have increased transmission probability from early, and we have this clustering of risk over time -- at the two phenomena.  We see that what each of those contributes can be really important to the control of infection.

If in fact we’re at this stage, if we look at the fraction of infection that we have to eliminate, the -- that people -- infected people to make them noncontagious.  So these are the different fractions that we make noncontagious, that -- we have a much easier time eradicating infection.  If we get up to this top level, we’ve eradicated the infection.  Depending on how much of the role of HI -- of the early infection is being affected by that behavior change component, and it becomes increasingly difficult as we move up that scale.  

And it sort of -- summarizing that, the level of transmissions from primary HIV infection is raised by two things, and we already said that the -- these two different sources are affected by different patterns of genetic clustering.  The more that behavior swings raise the fraction of transmissions during primary HIV infection, the harder it is to control the infection, the harder it is to control transmission.  And we look at the Brenner data and we’re -- we’re just at a preliminary stage, we’ll have to do this -- you know, better analysis, but it really looks like primary HIV infection transmission is much more important than just reflected by its transmission probability.  

So, overall, summary -- advances in diverse infection transmission systems models facilitate adopting an inference robustness assessment framework.  We’d like to get -- move epidemiology in the direction of -- of adopting that.  We think that if epidemiology moves to an inference robustness assessment framework, it has to move to a complex systems approach.  There’s no alternative when you want to relax simplifying assumptions.  And the complex systems mo -- models allow us to use data in ways that standard analysis doesn’t, such as the clustering analysis that I illustrated.  Thanks.

[applause]

Male Speaker: 

Thank you, Jim.  We’re going to have a short break now.  We’ll have a 15-minute break and reconvene at three o’clock for two more -- two more presentations, and then the final discussion.  See you then.

[break in audio]

Male Speaker: 

We’ll come in quickly, so as not to miss what I think will be an extremely interesting talk.  Our next speaker is Ary Goldberger, and he’s the Director of the Rey Laboratory, and Associate Professor of Medicine at the Harvard Medical School, and Program Director of the Research Resource for Complex Physiological Signals.  Another early adopter, Ary has been doing work on complex analyses of physiological data for -- for many years, has made many contributions, and if you go to his Web site, you also see that the characters -- the characters on the screen are -- represent, I guess, who the center, the Rey Center, was named after.  So if you remember Curious George and the Man in the Yellow Hat, you will see all those characters represented on his Web site, which is not important for today’s topic, but -- but fun anyway [laughs].  Ary.

Ary Goldberger: 

Thanks so much.  It’s a -- it’s a great pleasure to be here. Let’s see if I -- so what do -- do I have to do something?  So for those of you who -- actually, the -- our laboratory --

Male Speaker: 

You know what -- excuse me --

Ary Goldberger: 

The Rey Lab does have to do, in a metaphorical sense, with -- with getting into places that we don’t belong as -- because I came out of cardiology, and therefore am eminently unqualified to talk about the title of this talk, which has to do with neuroscience and physiology in a sense, but we --

Male Speaker: 

Which -- which presentation is it?

Ary Goldberger: 

So -- it says here, University of Michigan.

Male Speaker: 

Oh, that one?  Oh, it’s there?  Okay, sorry.  Oops. Got it.

Ary Goldberger: 

So we just get a slide show up here. 

So -- so the invitation was to talk about two areas where I have no guild membership; physiology and neuroscience, but this is very much connected, through the principles of universality and non-linear dynamics to cardiology, in a way that I hope I can demonstrate to you.  So, what I’d like to -- this will have sort of a musical format here, in a sense, that there will be a musician whose -- who will appear briefly, but there’ll be an overture and brief coda.  

So, the themes that sort of guide our work are threefold.  One is that physiologic signals and structures -- so the topology of physiology is anatomy -- are the most complex in nature.  So if you’re a physicist and you think you’ve got the most complex signals, come see us.  In fact, the people in our group are primarily physicists and engineers.  That important basic clinical and toxicologic information is actually encoded, or hidden, in the way things change; physiologic things which are signals change with time.  And that -- in these non-linear fluctuations there are mechanisms.  And that from a practical, from a clinical point of view, this is a -- the topic here is public health, that there’s a degradation, there’s a loss of complexity in both time and space that’s indicative of pathology, of aging, and of toxicity of various agents, so that we can actually use non-linear dynamics in a practical way, in a bedside way. 

So, the -- the complex variability, actually in a sense, is the signal, and this variability represents the signaling mechanisms.  So we don’t usually think about that in traditional physiology, and I will make a distinction here that not all variability is complex.  So there’s a certain type of -- of set of ingredients that make the type of variability that one sees under healthy conditions extremely complex, and there’s a degradation of that in various pathologic contexts. 

So here’s a quiz for you.  Can we do a quiz here?  Is it okay?  Okay.  So -- there was a quiz yesterday so I guess we can have -- so here’s -- here’s -- this is a friendly quiz, it’s -- I think it’s ungraded.  And so the question is, how good a physiologist, how good a dynamacist are you, and can you tell?  So, the proof of that non-linear pudding is, here are -- here are what are called time series. They’re instantaneous records of heart rate, on the vertical axis, versus time, on the -- on the X axis, a half hour of time, and four different subjects recorded, say, with someone wearing a cardiac monitor, a Holter monitor, where you can pick off the interbeat interval, and the heart rate is the inverse of that, in a very accurate way.  So you can measure the interspike interval, convert that to heart rate, and then you have four different recordings here from these four subjects, who are pretty much at rest, and -- and so their activity level is not different, and it was pretty much basal.  

So, but here -- here’s the -- so here’s the deal.  You pick out the one you think is the healthiest, and only one here represents sort of optimal health, in a sense, what we would all aspire to from a -- the point of view of cardiac control, which is much more than that.  And if you get it wrong, the problem is that the other three subjects are at extremely high risk of sudden death or of stroke.  So to make this a more -- most tests are just tests, you know, but to make this really compelling, imagine that the time series that you pick becomes your physiology instantaneously.

[laughter]

So, you’ll either have a really good day and a really good night, or something untoward will happen.  So, you want to think about it.  This is -- this is sort of the test of your life.  

So -- so that should be, you know, health versus disease, it should be pretty obvious, right?  So how many want pattern A?  What are all the -- pattern A -- where are all the steady-state equilibrium people here?  Okay. 

[laughter]

So, how about pattern C?  Anyone want pattern C?  I got one over here, one over there.  So, C is sort of oscillatory.  And how about -- we’ll go around in clockwise -- how about D?  So we’ve got a bunch of people -- and how many want B?  So it’s look like it’s -- D and B are probably the most -- most popular.  A few votes for C and I don’t think -- does anyone want A? 

[laughter] 

Yeah, aren’t there any people who are into homeostasis here?  

So what are the answers?  Let -- I’ll tell you what.  Since a lot of you got this deadly wrong, or dead wrong --

[laughter]

I want to -- I want to help you out.  So here -- let’s redo this, all right?  So -- answer -- here’s the -- forget about -- forget about dynamics because that’s not working.  Pick out -- imagine that you were mapping these four time series onto music -- a musical -- some type of -- you had a mapping so you could translate the variability or the lack thereof into some output that was notes.  Which one would make the most interesting music?  How many would pick A?  You don’t want to hear one note played over and over again?  How many would be C?  You -- you’re into, like, scales and stuff?

[laughter]

That’s a -- that’s a whole different psychopathology.  How many would pick -- would pick D?  D -- D is some -- someone -- someone just playing random notes. And how many would like to listen to B?  So you’re doing better.  All right.  So, A is heart failure. 

[laughter] 

C is heart failure. 

[laughter] 

So, are there any clinicians in the au -- in the audience, people who see patients?  Yeah, so -- so what occurs in heart failure that repeats itself about every minute, you can see the bed side, and it has to do with their breathing, and they’re two British names separated by a hyphen, and they’re [laughs] called -- it’s called Cheyne-Stokes breathing, yeah, very good.  And how about [laughs] -- and, so -- so the choice here is, do you think healthy dynamics are extremely patterned and periodic, so we’ve rejected A and C, which one has -- is sort of a flatline, the other is varia -- is variable, but in a very periodic fashion.  

But then the question is, do you want to be -- which type of variability do you want, because one -- D versus B -- one is perfectly healthy, you know, the fountain of youth.  The other is actually a very serious cardiac condition, so not all variability is healthy -- that’s -- there’s sort of a misconception in dynamics that variability and -- is the same as complexity.  No way.  

So which -- what is D here?  Well, D, that’s like random notes, that’s atrial fibrillation, very close but not identical to white noise, no correlations.  And B, if we could bottle, if we could package B, we’d have the answer.  Because, if you can model what’s going on in B, which is complex variability, extraordinarily complex variability, more complex in this healthy heartbeat than anything that -- that people in physics know currently had a model, we would have solved the D problem.  So that’s very, very interesting and that becomes the focus of a lot of activity that I’ll just allude to.  So there’s something about the pattern in B, or the complex pattern in B, that reflects healthy dynamics, and that’s -- also has to do with something called fractals that we’ll come back to. 

So, here’s another question, which relates to why there’s a problem with A, which is that very flat output.  The question is, is the body a machine?  And if you go back to a historic paper by Walter Cannon, who was at my institution at Harvard -- or I’m at his, because there’s a whole society named after him, quite appropriately.  He was a giant figure in the field of physiology. He -- he proposed the notion of homeostasis, which actually goes back years, decades, before, to Claude Bernard’s notion of the “milieu interieur,” the constant sea of the body as being the wisdom of the body.  

And there were two components to what Cannon talked about when talks -- talked about homeostasis, which is probably, if you -- if you do a MedLine search of homeostasis, there are tens and thousands of articles there, and that’s sort of a -- that’s a buzzword.  People talk about homeostatic regulation.  They have at this conference.  But embedded in that are really two notions, and the key overall notion is that the body is a type of servomechanistic machine.  It’s a machine that wants to keep things both inbounds and to reduce variability.  The first part is clearly true.  If you look at the -- at the cartoon below, the idea of homeostasis is you have some flat steady state, you perturb it, and you come back to it.  And so, the corrective notion there clearly is correct because your body doesn’t want its pH to be 7.8 or 6.9.  You’d dissolve in acid or in alkali.

But the question -- the deeper question here, is, is the underlying pattern -- what the body aspires to, in a sense, really a constant single steady state?  Is it an equilibrium-type state, as Cannon noted?  Or is it something quite different?  So there’s a -- there’s an “or” here, and the “or” is homeostasis revisited, which is, in fact, the type of variability we saw in the healthy heartbeat -- is complex spatiotemporal variability, actually a mechanism of healthy stability.  And you have to be very careful here, because what mathematicians mean by stability, and what is actually stability in a physiologic or eco -- ecologic context are very, very different. 

So how can that be?  How can variability be a mechanism of something?  Because if that’s the case, then the body isn’t a machine in any sense that an engineer would think about.  It’s a complex evolved system, which is totally different from anything machine-like.  And, indeed, all notions of machine-like entities that guide anyone’s thinking about pharmacology, or about medicine, are going to lead to very dangerous end results in many cases.  If this statement is true or has any connection with verisimilitude, than we would have to, in fact, fundamentally rethink all notions of mechanisms in causality and physiology.  So that would be a good thing because it would -- would invi -- yeah, it would be a good thing, right, because then you could fire all the people that are doing the wrong stuff and hire a new generation of people who know what’s going on. 

So -- so what [laughs] -- what are the hallmarks -- if so, what is -- “What is health?” was a question posed yesterday.  And so, health and adaptability are very, very closely linked, but if you -- if we take -- just take the data, if we look at the healthy heartbeat, and use that as sort of a template for -- for healthy dynamics, and there’s a reason we can do that, there are a number of statistical features of the healthy heartbeat that actually are extremely important and are -- are not part of the everyday vocabulary of people in biostatistics, or in -- where I come from, in physiology, certainly not in cardiology.  

And they have to do with nonstationarity, the fact that the statistics actually change with time, the different moments -- the mean, the variants, and higher moments are -- don’t sit still, so there’s a -- there’s a, sort of a -- bit of a problem area about whether you’re talking about a process being stationary or the output of the process.  Here we’re talking about the stationarity of the signal, which is all we can -- can measure.  There’s nonlinearity, which is a major theme of this conference, and what that means is crosstalk for biologists.  It’s the -- the components talk to each other in nonadditive or unexpected ways.  

A third component is multiscale organization, which is to stay that there are fluctuations in structures that go across scale, and that they may have fractal organization, or so-called self-similarity, which we’ll come back to.  And a fourth very interesting feature is -- is called time irreversibility, that the signal doesn’t read the same forward and backward.  You can’t just time reverse it and have the same statistical properties.  And that so-called arrow of time, which we’ll come back to, is actually a marker of nonequilibrium dynamics -- that energy is being pumped in, you get dissipation, and things can’t be just replayed back and forth.  If the system is at an equilibrium, the flatline or the sine wave, it doesn’t matter, it’s back and forth, doesn’t make a difference. 

So it’s interesting though, that in our -- in terms of the linguistic -- sort of the semantics of health, that three of the essential ingredients, nonstationarity, nonlinearity, and nonequilibrium dynamics, are introduced by a negative.  That’s sort of a problem because it creates a bias that, I mean -- you don’t want to be -- you don’t want to have, you know -- be a non-something or other, it’s like a non-sequitur or a non-person, that’s not good.  So, if -- so, do you want to be equilibrium or nonequilibrium?  You know, do you want to be stationary or nonstation -- the people -- so the language actually creates a bias against what’s actually the -- the physiology.  So, there’s another bias in the field, which is -- so it’s illustrated by -- this is the way cardiologists represent the heart.  So it’s a beautiful picture by Frank Netter, with his glorious heart filling up the screen and a metronomically periodic, or regular heartbeat, the electrocardiogram underneath, is beating like a clock.  So that’s a -- the problem there is what?  It’s sort of a little bit reminiscent of the New Yorker’s view of -- of the United States of the world --

[laughter]

-- which doesn’t -- doesn’t even exist here, I guess.  So it’s like mainly Manhattan and just a few blocks there of the nearest -- and beyond that there’s something called the Midwest, which I guess doesn’t really exist except for here, and then -- and then --

[laughter]

So that’s -- where I come from, that’s where people -- so they see the world.  So there’s -- there’s a certain solipsistic view of things, and so -- probably a more -- a more correct view is a more systemic or network view, which is what -- the theme of this conference, which is actually -- the heart becomes slightly -- it gets rescaled down to, you know, its proper dimensionality, which is part of a network of -- of interacting components, which go from the central nervous system to the autonomic nervous system, and they all sort of compete, there’s this competitive interaction.  

And so you have coupled feedback networks that operate over a wide range of temporal and spatial scales from the molecular, submolecular, on up to the systemic.  And indeed, on up beyond just organs to the individual, then, to the society, and they all -- so this is an enormous amount of complexity in terms of feedback.  So it’s not bottom u -- there’s also, I think, a misconception that things are bottom up or top down.  The physiology is both simultaneously, which creates enormous problems in modeling.  So here’s -- here’s another quiz, which I’m sure you’ll all get right, is whether -- is your world linear or nonlinear?  And how do you -- you know, if you’re trying to discuss this with a colleague who still insists on linearity, then their world view would be dominated by the ideas that simple rules lead to simple behaviors, that things add up, that there’s proportionality of input and output, and that there’s high predictability and no surprises.  So that would be, sort of, the world of dominoes, you know, and that’s the linear causal chain.  So that’s one worldview. 

The nonlinear view is that simple rules can, in fact, lead to extraordinarily complex behaviors, that small changes can have huge effects, so-called butterfly phenomenon, that there’s low-predictability, and that anomalies are the system, that’s what you expect, and that the whole is not really greater or less than the sum of the parts, but it can be qualitatively different from.  And that’s one definition of emergence, and as we heard yesterday, that people differ in how they define emergence.  But if you get a group of components together and they, you know, there’s like, you know, puff, and then something new happens, you know, a bunch of neurons get together and make the Jupiter Symphony, that’s emergence. 

So, what’s wrong with -- this is the sort of way people represent signaling.  This has -- this is not in any way a talk about this cascade, and this -- this was likely years and years of extraordinarily elegant molecular work.  But if someone shows you this, if you’re -- if you’re a student at a lecture in this hall and this is what’s being shown, without any additional comment about what’s going on, what would be your objection?  What’s -- what’s wrong, not knowing anything about the details here, but what would be wrong with this, just in sort of a systems biologic context?  Physiology is what we used to call systems biology. 

Yeah, so there’s a problem.  All the arrows are going in one direction.  That’s not so great.  There’s no feedback, there’s no nonlinearity indicated.  There should be like a caution that the components are not interacting in an additive fashion.  So this is complicated, this diagram -- the system is complex, but the diagram is complicated, but the complexity is somehow missing.  So, complexity and complicated are not the same, and so I want to cite a -- someone who was, in fact, an expert on that.  So, there’s a quote by Maurice Ravel where he said, “Complex, never complicated,” to describe his work.  So -- because complex structures, like the heartbeat, have long-range correlations, they have -- they’re organized, but in an extraordinary fashion.  They have multiscale organization.  They’re not random.  They’re not simply additive. They’re something very, very special.  And deconstructing them, which is a bad term, is -- is a very delicate operation.  

So, so the other question is, if you’re interested in interacting with a complex system, if you’re into pharmacology, for example, or therapeutics, which everyone in medicine is, what’s the target here?  How -- what, what -- everyone -- if you go into discussions of drug effects and signaling meetings, you know, it’s all about targets, right?  It’s very militaristic; “Let’s hit that target,” you know, but you’ve got to be a little bit careful, because in this type of network, what’s the target?  So be careful. 

With nonlinear network systems, targeted interventions may backfire.  You can hit the “target,” you can block something, but because of the feedback and feedforward, you may end up affecting something not even on the screen here.  So, does that happen?  Yeah, you -- so, it’s actually -- it happens all the time and -- and it creates pharmacologic disaster.  So here’s a -- I don’t know if this is a new concept -- but I think we should be thinking about the system as target, at the end of whatever you do, which may be informed, and should be informed by the -- by the -- by the details.  But there’s also the system, which is what you’re trying to interact with.  

So, here’s the -- the danger is that there’s a linear fallacy, which is the widely held assumption that biologic systems can be largely understood by dissecting out the micro components, or the modules, and analyzing them in isolation.  This is called “Rube Goldberg” physiology, in a -- in a sense.  Not Goldberger, but it’s -- so, so you -- that you can take out the components, put them back, and reconstruct the system.  So, another sort of misnomer, is the idea that healthy dynamics are an equilibrium state, and that there’s this sense that health -- we were at an equilibrium, disease sort of torques us out of balance, and then you go, you know, in some chiropractic way -- not necessarily in -- not exactly like that -- but you get, you know, sort of retorqued, you know, back to recovery.  So that’s a problem because health is actually far from equilibrium, as we’ll talk about in a second.  But there is an equilibrium state in physiology, which is called what?  Yeah, it’s called death --

[laughter]

-- which is a state of, sort of -- the maximum probability where there’s no -- there’s no thermal gradients between you and the environment, and that’s not what we’re looking at.  So, linear models -- so, you say, “Well, you know, you have to do something.”  But linear models have these huge unintended consequences, and there are probably no better examples than in pharmacology where people create drugs like inhibitors of vascular endothelial growth factor to inhibit cancer growth, but -- but that may cause increase in heart attacks and stroke.  And you can think of a lot of others, and the papers have been filled with these.  Avandia, just last week, Torcetrapib was -- increased HDL, that’s great, it gets -- you know, because HDL, low HDL, is a risk factor for heart attacks, so why not increase it?  

You can do that pharmacologically with this drug, Torcetrapib, but that caused all sorts of other types of mischief, including increased heart attacks.  Vioxx story is -- is well known.  So, if you hit the target, you may get -- you know, that may be the quote-unquote “bull’s-eye,” but you have to be very careful about what’s going on at the system level.  Same in looking for this magic bullet of treating, say, sepsis, which has a well-known set of mediators, and people sort of know the -- or part of the local mechanisms.  But the problem is, quoting my colleague Bill Aird, that over the past decade, more than 10 thousand patients have been enrolled in greater than 20 placebo-controlled, randomized phase three clinical trials, and almost nothing works, because there’s something wrong -- there’s something wrong with our understanding of the mechanisms.  An example of out of box, sort of nonlinear pharmacology, would be the treatment of chronic heart failure, where the linear approach is to increase the heart’s pumping with drugs like Milrinone and Vesnarinone, and the problem with that is that you get excess mortality.   

A systems approach, which didn’t come anywhere from the -- I know being we’re Web cast at the NIH -- but the systems approach, which everyone now uses, is to use beta blockers, which were considered malpractice when I was in training, because they would reduce cardiac output, but they actually also block a vicious cycle of neurohormonal activation and enhance survival in -- in heart failure.  So the bad news is that physiology is complex, that -- there’s good news, which is that there are certain general mechanisms that do not depend on the details of the system that are called universalities.  And there’s this -- what I would propose is this wonderful world of hidden mechanisms in physiology.  And the terms are here: bifurcations, nonlinear oscillations, deterministic chaos, time asymmetry, fractals, and so forth.  We don’t use these terms much in conventional physiology, or at all, but they’re all -- they are probably in the -- in the data, and the world of nonlinear dynamics opens up a whole new realm of quote-unquote “mechanistic thinking.”  

One of the most important aspects of complex systems is their multiscale nature.  And one of the defining features in multiscale networks is -- is this so-called fractal type of structure or function.  Fractals are tree-like objects.  They have self-similarity.  They’re built of the large scale, which is reminiscent of what you see when you magnify the objects.  So branches give rise to branches give rise to branches, and this is self-similarity or scale invariance.  But you can also see it, as you do on the right, in processes, like the heartbeat, that have no characteristic scale of time, that have fluctuations are long-range, shorter-range, and over minutes or seconds, that they all play together like a symphony orchestra.  So a fractal is an object that doesn’t have a characteristic scale of time or space.  A tree doesn’t have a preferred branch size.  The heartbeat doesn’t have a preferred frequency.  So that’s actually a defining feature of healthy complexity, one of them. 

The most famous fractal object is the mathematical one called the Mandelbrot Set.  Remarkably, it’s -- it can be created -- is created -- out of this very simple recipe of taking a number in the complex plain, squaring it and adding a constant, iterating that, and then color-coding the output.  And you get this solar bursting type of -- of pattern, of patterns within patterns within patterns; it’s remarkable.  Fractals have been around for a long time, before people put the neur -- the tame -- the name of fractal on them, as Mandlebrot did.  The fractal nature of turbulence is beautifully illustrated in this woodcut from about 1813 by who? --1831, excuse me.  Yeah, Hokusai, “The Great Wave Off of Kanagawa.”  So, the -- the claw-like waves giving off these wavelets and so forth.  So turbulence has this fractal natures.  Mount Fuji in the background is also fractal, as are the clouds.  

We like to see fractals, and one reason we like to see them is because they’re also inside of us, I believe.  That’s -- that’s a -- we -- we sort of experience the fractal essence of nature because we are ourselves are -- have this fractal property.  Our nerve cells are fractal.  You can also get fractal growth of bacteria. The lung tree, which we’ve heard about indirectly with TB susceptibility is, under healthy conditions, a fractal ‑‑ fractals guide the creation of blood vessels.  And the healthy heartbeat ‑‑ you can be fractal in time, and in the case of the healthy heartbeat, you have fluctuations over long time scales ‑‑ you don't feel these -- I want to emphasize that this is not the source of palpitations ‑‑ if you feel your heart dancing around, or it feels irregular, that's not ‑‑ that's not what the healthy heartbeat is.  This is a subliminal sense ‑‑ it's like being an athlete in the zone ‑‑ the fluctuation, sort of the jazzy variability of the healthy heartbeat is below the resolution of any sensation.  You don't feel that.  

And that's why it's counterintuitive ‑‑ but if you look ‑‑ everything fractal is to expand the window and look on smaller and smaller scales and then to see if you get statistically, or in some way, self-similar types of subcomponents, and in this case the fluctuations are there on orders of hours, to minutes, to seconds.  The system doesn't smooth out or flatten out until you get between heartbeats.  So fractals produce something mathematically called power laws which are ‑‑ inverse power laws have a negative slope on double log clots, they’re not exponential decays, they're long-range correlated processes and that is the basis of some of the tests for fractality and the changes that occur with -- with various pathologies.  

One of the points I wanted to emphasize was that people say, “Well fractals -- everything is fractals, so nothing -- nothing is meaningfully so.”  But that's not the case.  The healthy heartbeat, like other processes in physiology, is fractal, and when pathophysiology supervenes due to disease, or severe aging, or to toxicity, the system literally breaks down, it loses its multiscale variability and there are only two places it can go, dynamically.  If you're very, very sick, or you're taking care of a patient who's very, very sick, the system is either going to lose its multiscale variability and just get randomized, in which case it looks like atrial fibrillation, down the right lower graph.  That's variable, but that's not nonlinear chaos.  Or, it looks like it does in the left lower part, which is one scale ‑‑ the opposite of be -- of having many scales is having one scale.  

That makes it very easy to recognize, because if you have just a single time scale frequency, you’re periodic, and then you're very transparent because you repeat yourself again and again ‑‑ you repeat yourself again and again, and that becomes very boring.  But it also becomes clinically necessary because that's how ‑‑ clinicians are not subtle ‑‑ they are subtle, I don't mean to disparage my – but they can’t be -- clinicians are not looking to differentiate the, you know, Jupiter from the Haffner Symphony, they're looking to -- to make much more extreme types of diagnoses. 

So, why is it physiologic to be fractal?  And this gets at the question posed yesterday by David about, “What is health, and why don't you pick up a textbook of medicine and find a definition of health?”  And the answer is, in part, because health is really a state of capability, or states of capability, and it's sort of the capability to cope with the unpredictable.  So what fractal systems do, is they buy you a broad range of responses and these have long‑range correlations, they organize the system over seconds and minutes and hours, and longer and shorter time scales, and that leads to adaptability, because you can recruit different frequencies, literally.  It's like an athlete responding to either a curve ball, or a change of pace, or a fastball, and what fractals do is they prevent the system from getting mode locked.  

The worst place you can be in physiology is to be locked into a characteristic or single mode, then be -- you become highly periodic and you lose your adaptability, you lose your flexibility.  That's what we've termed the “Tacoma Narrows Bridge” syndrome, so, if you remember this disaster of engineering -- this happened because this bridge had a characteristic frequency, which was knocked over by a gust of wind and the bridge literally collapsed.  It oscillated, and then it collapsed.  And, so that's what happens in -- in adverse physiology.  If you have a characteristic frequency that's very maladaptive -- the loss of complexity, the lo -- which is very much synonymous with the loss of information, is actually a defining feature of disease, and what happens is the output of physiologic systems often becomes more regular and predictable with disease.  

And that prac -- so here's ‑‑ the practice of medicine, in fact, is impossible without such predictable behaviors.  Clinicians are very subtle  in their diagnostic ability, but what they're looking for with -- mostly, is the loss of complex variability, the appearance of stereotypy, because that allows them to make diagnoses.  Healthy function, which is multiscale information rich, is infinitely harder to characterize because it's a state of being adaptive.  And so if you -- if you look at various types of pathologies, from Cheyne‑Stokes breathing, to Parkinsonian tremors, to obsessive-compulsive disease, down the list, what you see are diseases of emergent periodicity.  Things get strikingly regular and metronomic, very boring, but very much accessible to immediate, or prompt, clinical diagnosis.  

So, the question I have is, do memes correspond to one of these pathologic periodicities, where you get a loss of complex variability and the system gets -- gets wrapped up in a characteristic frequency?  It sounded that way from the description.  So what's the cure?  Well, the cure is to fight ‑‑ is to fight sameness as what was put in this ad for, interestingly enough ‑‑ this is sort of the anti-meme, so this was like a Reverend Moon wedding, where everyone was dressed the same, everyone was doing the same thing.  That's not a good thing to have, socially or physiologically, and the antidote, according to the Metropolitan Museum, is art.  And art is therapeutic, which is very interesting.  So, what I -- if -- can I run over by ‑‑ by just three -- yeah, whatever ‑‑ three units of something.

[laughter]

So, what I want -- [laughs] what I wanted -- I, and -- so, this will be brief, but I wanted to just -- to show you what -- the dynamics of death and life are very different.  So, the normal heart has this property which is very fundamental, which is time asymmetry.  The electrocardiogram doesn't look the same going forward and backward.  And it'd be very obvious if one reversed that, to anyone who had any inkling of clinical medicine.  The dying heart, on the other hand ‑‑ if you take the recording below of someone whose literally dying, you can flip it around, you can put it upside down, no one's going to know the difference.  No one would know.  I don’t even know if I got it right here, because it's time sometric, it reads forward and backward the same, and because you've gone from far from equilibrium, to close to equilibrium, and the next step would be death.  

So this property of multitime irreversibility, which my colleague, Madalena Costa, and our group have been developing, has to do with the notion that time irreversibility is actually greatest for healthy systems, which are the most adaptive, they're furthest from equilibrium, they take in energy, they dissipate it, they take it in, and they read differently in a signal analysis point, if you left and right and right and left.  But as with aging and disease, you actually get a loss of this fundamental property which -- which Madalena developed a way to actually measure.  So, the warning, then, is that excessive regularity is bad for your health, and so examples like photic stimulation ‑‑ those things that are too periodic, so --

[laughter]

-- that’s bad.  Loss of complexity; repetitive stress injury ‑‑ if you're doing something that's too repetitive, that's bad for you.  This may also apply to musicians, as Tony is.  And so the question is, and the final thing I just wanted to mention is that there are many different ways of measuring complexity.  Obviously, you can't use ‑‑ there's no preferred single metric that will allow you to pull out the key features of something that's beyond our current mathematical tools, and that what's listed here are a number of different techniques.  If you want to read about these and have access to a syllabus in a course we put on you can go to this website on PhysioNet.  PhysioNet is an open access, open source -- sof -- source of software tools and data bases that -- that’s sponsored by the NIH, previously by the NCR, and surely to be taken over by NIBIB and NIGMS.  

And you can get data software tutorials, you can get the code for multiscale entropy, which is another measure of complexity that Madalena developed, and that people have used in other articles, in this case from the neurosciences.  And just as the last note here, I just wanted to mention that -- that the idea of using dynamics to actually probe system function is something we refer to as dynamical assays ‑‑ that if you enhance system complexity, are you actually doing something good for the system ‑‑ we think so, because you're adding information.  On the other hand, if you remove information ‑‑ make the system less complex, that's probably an adverse outcome.  

One test of this is something we just published in a paper by Madalena, and the group with Lew Lipsitz, and C.K. Peng is -- is testing a ‑‑ an intervention called ‑‑ it's based on stochastic resonance that Jim Collins and his colleagues at BU, Boston University, devised, where you stimulate the -- underneath of the feet with subsensory stimulation and that, through mechanisms that are not fully understood, actually noises up the system and enhances balance.  And, so Madalena looked at this using complexity measures that are multiscale.  And what's of interest is that as you add noise to this system, what you actually do in this -- in this final graph here is, you can actually enhance the -- the complexity of these sway movements.  You have people on a balance platform, you can measure their sway back and forth, and if you put this noise based therapy on, you can actually make old people more complex and more stable, in a sense ‑‑ physiologic sense, so that's a dynamical assay.

So, there are other uses in terms of looking at predicting drug toxicity with cardiac drugs that I won't get into, and in forecasting seizures.  Loss of complexity may antedate the onset of seizures, which is very preliminary data that Madalena has with a group of colleagues at Harvard.  So, what I want to do is, we started with an overture, just the final 30 seconds is just the -- sort of the package insert to trainees, which is just to remind you that you're dealing with the most complex systems in nature.  You should look for anomalies in nonlinear input-output relations, because that's what’s in the data, and if you're coming up with straight lines on linear graphs, that's only a small part of the system.  

Structure and function are inexorably linked in physiology and anatomy, but it's nonlinear structure and function.  That you should think in terms of multiscale networks, phase transitions, emergent and collective mechanisms, and to paraphrase Sir Arthur Eddington, the astrophysicist, at the beginning of the 20th century, physiologic mechanisms are not only stranger than we imagine, but they're likely stranger and more complex than we can imagine.  So, I apologize for running over, and I thank you for your attention.

[applause]

Male Speaker:  

Thank you, Ary, and I guess this belies the quote from Einstein about, things should only be as simple as necessary [laughs].  And in this case that's not very simple.  We next move to our final presentation before our panel, and that -- our speaker is David Levy.  He's an economist at the University of Baltimore, and also at PIRE, and among other things, has contributed substantially to the modeling and simulation of various smoking policy interventions.  David.

David Levy:  

Okay.  Okay, I'll be talking about a model of tobacco control policies, and I'm going to use a quote that's already been used, but maybe I'll use it a little bit differently.  And it's a quote by George Box, which says that, “all models are wrong; some models are useful.”  And, you know, one of the themes that I think has run through the last two days is, to go out on a limb, you know.  You've got to take chances, try new methodologies.  Don't stick to the tried and true.  My work is more methodologically incremental, but I think, you know, what I've tried to do is kind of go out on a limb, in terms of getting out there in the policy world and developing a model that people can use.  And that's always been the goal from the start rather than to -- 

So anyway, been working on this model for about seven or eight years, with funding from many different organizations, and -- started out with funding from SAMHSA, to look at tobacco control policies for the United States.  Since then, we've developed models for a number of states and countries throughout the world.  Our newest one is Algeria ‑‑ if somebody knows where that is, please tell me.  But, what we try to do is ‑‑ you know, again, we're kind of going out on a limb here because the evidence is usually for developed countries.  So, one of the things we’ve had to do is adapt the models based on ideas, discussion with people in those countries, to other countries.  

Okay, what is SimSmoke?  As I said, it's a -- it’s a model of tobacco control policies and it's set up as a dynamic model, starting with tobacco use and projecting from that tobacco related deaths, then looking at the effects of policies, most directly on smoking rates, and then ultimately on deaths.  I call it a systems model.  It's a systems model in that we try to take into account how the effects vary by the way in which the policy is implemented, and how it varies with demographics, and how those demographic effects trace throughout the system.  But then, most importantly, it's dynamic. It does have nonlinear equations in it, and the effects of policies are interactive.  It is set up as a deterministic model, but we do sensitivity analysis based on reasonable ranges of parameters from the literature.  But again, it is unidirectional, and the key focus is on the relationship between -- oops -- policy changes ‑‑ policy changes and, hmm ‑‑ 

Male Speaker:

[Inaudible] forward, that is [inaudible].

David Levy:

Okay.  Looking at the relationship between policy changes and cigarette use.  And taking into account, not always explicitly but, you know, in a theoretical sense, the role of norms, attitudes, and opportunities.  As an economist, you know, I focus on ‑‑ originally was focusing mostly on opportunities, but we're working with other people getting into this area.  I quickly realized the importance of norms and attitudes.  Okay.  So, we started off, you know, summarizing literature, and we tried to look not only at the tobacco literature ‑‑ originally I worked with Harold Holder on this model, who’s from the alcohol field, but we looked at other literatures in prevention.  

In developing the model, we quickly realized that, you know, there were gaps, so we needed theory.  And we developed some theories on our own, but I think one of the very most important parts of this project was, we've always had expert panels.  What we've done is bring together people from many different fields, not only economists, sociologists, psychologists, epidemiologists, and so on.  But, anyway, you know, we've tried to employ that at all stages of the model.  

The model begins very simply, as most macro models do, with a population model.  It begins in an initial year and then moves through time with births and deaths.  Then, transposed onto that is the smoking model, where we divide up the population into never smokers, smokers, and ex-smokers and the process evolves through time through initiation, cessation, and relapse.  The death model, which I'm going to talk very little about, is a very standard model of smoking attributable deaths, and what I'm going to focus on are the policy modules.  

Okay, so again, here's our basic population model, in some of the models we do incorporate migration and immigration, but it’s simple.  Year by year, people age, move through time ‑‑ we do distinguish not only by age, but also by gender, in the models.  What happened, there -- What we have here, the arrows ‑‑ oops, it got knocked out -- oh -- there it is, amazing.  Talking about [laughs] emergent properties ‑‑ we start off -- people, you know, are born -- oops -- as never smokers.  I've got to get these two straight -- see, this is why I don't do truly complex models.  We start off -- you know, people are born as never smokers, although one of the extensions we're looking at is how effects transmit over generations.  But in this model people start off as never smokers, some proportion initiate each year between the ages of about -- actually starts at age 10, through about age 24.  Then, if they stay a smoker for a year, they're considered a current smoker, which is someone who smokes every day or some days.  

And some proportion of those smokers quit each year, but unfortunately, another portion relapses.  So basic model is our stocks are the never smokers, smokers, and ex-smokers, which by the way, we do distinguish by year, and the flows in are through initiation and relapse, and the flow out of smoking is through cessation.  We have extended the model, and I'll talk a little bit -- by including smoking intensity variables, that is, per day quantity smoke -- average quantity smoked per day, and number of days per month.  We're also looking now at incorporating duration, types of cigarettes, and other tobacco use.  But that's where things get really kind of, complex and messy, especially when you try to determine how policies affect these kinds of variables, and ultimately affect death rates.  

We've also developed some models distinguishing by education, income -- actually, we're starting to develop those, and thinking about racial, ethnic, and geographic variations.  Again, here's the simple model of deaths, where we examine ‑‑ we have a model that gives total deaths, total mor -- based on total mortality risk, and then we distinguish by types.  And I mentioned we are -- we also have a separate model that looks at quantity and duration, but again, the problem is, how the policies really affect that and what affect does that have.  In other words, if a policy gets people to reduce the quantity smoked, there's a finding that they compensate by inhaling more deeply.  So, is that kind of change going to have the same effect as somebody who's been smoking fewer cigarettes over -- you know, since they started?  

Okay, so now the policy modules.  And here's the five that we focus on in the US model, in other countries we focus also on warning labels and advertising, which have kind of been ruled out, at least for now, in the United States, as potential policies.  The way we modeled this is -- most of the effects are through percentage reductions.  And, what we do ‑‑ and there's some support for this in the literature, although one thing I want to emphasize is, the literature, at least in tobacco control, and from what I've seen in public health generally, does not do a good job at examining dynamic effects over time.  In other words, how things unfold or don't unfold.  And that's ‑‑ I'm sure there's much more complexity than we have, but we have large effects in the first couple of years, which is what most studies look at, and then the effects are maintained through time and -- and sometimes increase in time, through their effects on initiation and cessation effects.  

We also allow the effects to differ by age and gender, and allow those to translate through the model, which is what I call one of the systems effects, which statistical studies generally don't do.  Another thing that we've tried to do is look at how the effects vary depending on the way in which the policy is implemented.  You know, oftentimes people do meta-analyses of policies, but the way they're implemented is very different.  What we’ve focused on, in lots of our models, is trying to explain the variation in results.  Okay, starting off with taxes, here we do have fairly uniform effects, and -- but what we see is the effects do vary by age.  And -- actually these elasticities were original elasticities.  We've changed it, so for seniors we now have a higher elasticity.  

What we found out is that the model predicted really poorly for seniors, and so we looked at ‑‑ you know -- and the major policy change in the model was the price change, so we did a study and we found that seniors, in fact, do have more elastic, as economists would call it, more sensitive demands to price.  And what happens in the model is, just through the age effects, the effects of a price increase do increase over time because the bigger effects are on those who are younger and so if you trace it dynamically through the system, as those people age the effects of an increased price spreads out, and there are bigger effects if you look at the overall adult prevalence.  There are some dynamic issues that we're looking at. And again, you know, even in -- on taxes and prices where we have the most studies ‑‑ I mean, literally there's hundreds and hundreds of studies, we really don't have ‑‑ we have good knowledge on the relationship between prices and smoking prevalence.  We do not have good knowledge of the effects on initiation, cessation, and relapse rates themselves.  

You know, one of the things we also found is, there is -- there does seem to be relationship between quantity and prevalence, which also is not really developed in the literature.  There's these separate models that are only very indirectly connected.  Next, we look at clean indoor air laws, where we have many, many studies of firms, or groups of firms, to look at the effects of various restrictions.  And we find somewhat consistent results over those studies.  Now, those are policies that are enforced at the firm level.  When we talk about clean air laws, it's at the broader local, state, or national level and -- and here the studies are not so good.  And, in particular, we do have a couple of good studies that look at worksite laws, but as far as the other kinds of clean air laws, the results are, at best, very tentative.  

So, what we tried to do is develop a framework for looking at these different laws where we took into account -- looking at the worksite laws in particular, things like, you know, the restrictiveness of the ‑‑ how restrictive was the smoking ban in a firm and things like that.  What we also did was, in trying to actually look at the effect of clean air laws -- and this is something that none of the empirical studies do -- is take into account, when you pass a law there are already many firms that have these clean‑air restrictions.  Then, another factor that we recognize, and again, this is a lot through the panel and discussions, is, even though these laws seem to be self-enforced, and this became very important when you look at other countries, they're not so well public-enforced and -- or not so well enforced where they've been tried, especially in some of the less-developed nations.

I'm now doing a model for France, and it will be interesting to see how well their new clean air law is actually ‑‑ how much compliance we actually see in France.  So, public support seems to be important, which suggests the importance of the role of other policies, like for example, you know, when I ‑‑ in the work with Malaysia and Thailand, you know, even though clean air laws is considered one of the big three policies, you know, I'm very cautious in terms of recommendations and say, “You may want to first have comprehensive mass media campaigns, make sure you raise the taxes, you know, start doing things to sensitize smokers, and also start changing norms so that when these laws are passed they are ‑‑ there is some compliance.”  So the model tries to take into account all these various factors in trying to look at how clean air laws will actually translate into effects on smoking prevalence.  

Next was mass media policy, and most of these studies, when you look at them, look at, you know, kind of a before and after picture.  And there's many different studies, but the effects are fairly mixed.  And most of those policies are implemented with other policies.  And, in particular, the ones where you see the strongest effects of media campaigns, such as in California and -- and Arizona and Massachusetts, you know, there are many other policies in effect.  So, these models are basically before and after kinds of pictures with, you know, some of them look at the pattern of effects over time and usually don't explain those too well.  

So we tried to, you know, think more about it, bring in some theory, and in particular bring in quantitative dimensions, and the effects of other policies.  What we did stay away from is content, with the recognition that content is very difficult to address, and probably, good content in one type of environment would not work in another.  In other words, what works in California may not work in Kentucky.  We also do not bring into account tobacco advertising.  Granted, an important feedback loop, but we don’t have information.  And in fact, the studies that have been done, you know, don’t control for tobacco advertising, so implicitly it’s a net effect of tobacco advertising.  But, you know, we’ve thought about these issues.  

Okay, so what we did is bring in, you know, the kind of curve that economists are very familiar with, the old S-shaped curve.  And -- which gets across the idea that you have to get to the point where you’re going way up the slope, you know.  And this is -- this is the type of curve that’s used by people in advertising, who have the motto, “Got to hit them three times before pier -- before the ads pierce the army -- armor.”  What we also brought in, was to take into account other policies, recognizing that much of the information that people get is not from the -- the ads themselves, but also the media coverage that comes with it.  So, this is why in states like California, where there does seem to have big effects, we would attribute that to the tax increase and some of the other laws that came into effect and also worked to help change norms and attitudes.  

Let’s see -- oh, next is the youth access model, and here again -- here’s a literature where the results are all over the board.  And in the panel we had, we had people that thought that youth access policies are, you know, bad.  They’re -- they’re bad because they detract from good policies, and we had people that said that they were very good, and people in between.  And the literature, if you looked at the literature, some of the studies found that they were effective, some not.  

So my goal was to develop a model, which explained, you know, where, in fact, youth access policies -- those are laws that try to stop the sale of cigarettes to youth, where they’re effective.  And we considered two important factors that weren’t really considered in any of the studies, and that is the role of non-retail sources, because as you can see here, youth get over half of their cigarettes -- and this is actually older data, my guess is it’s even more -- more skewed now, it’s probably -- a larger percent is even from non-retail sources.  But, you know, even back when we developed the model, less than 50 percent was from retail sources.  The other was from non-resale, other sources, and theft, I don’t know if you’d consider that retail or not, and vending machine sales.  So the idea was to think about how, when you do youth policies, how that might affect non-retail sales, or non-retail youths.  

So we developed a model that incorporated that, and also incorporated -- looked at how the different types of youth access policies -- most of the attention focused on compliance checks, but also the role of penalties and merchant concerns.  And we developed a model that started off with the policies themselves, brought it together in a multiplicative function.  Then in terms of retail compliance, we again have, you know -- as an economist I love these S-shaped curves, and they particularly make sense here because you have to get to a very high level of retail compliance, particularly in a city like New York, because, you know, if there’s four or five people selling in Manhattan, the kids will probably know those sellers right away.  

So, we have an S-shaped curve relating retail compliance to purchasers, and then we also have substitution into non-retail sources.  So, and this led to effects which allowed for substitution.  I’m running low on time, so I won’t get into the effects.  But we also distinguished effects for older versus younger youth, who had more ability to substitute because they knew -- they were closer to 18-, 19-year-old friends. 

Next, with cessation treatment policies, here again we have very good knowledge on the effectiveness of treatments, though the evidence on the actual policies, how they affect treatment use, and also, even more, how they affect quit attempts, was less clear.  So we started off with a decision theoretic model, and then we tried to trace the effects looking at random controlled trials, bringing in real world effects.  Now, to get into some of the results of the model.  There’s two important parts of the model.  There’s the tracking model, these -- what we try to do is start the model at a year before major policies go into effect and hopefully we have good data going back that far.  And we track it, then, up to the present, and that gives us the ability to calibrate and validate the model, and something else which I’ll talk about is look at the role of past policies.  Then, to the extent that the model works well, we can use it for future projection.  

So, again, you know, we want to justify the model.  And we justify it based on, you know, how it’s a reflection of past studies and so on and through publications of reviews and all that.  But another important thing is benchmarking, that is, trying to explain the different studies in an area.  Try to, you know, explain the different studies of youth access and within our model of how policies work.  And finally, validating the model; here are the results for -- for smoking prevalence.  And I think the thing that’s impressive about these results is that we do explain the turning points.  Our timing is a little bit off, and that’s one of the things that got us into quantity, because the big change that occurred right here was a large price change.  

We also found -- and, you know, one of the things I also want to emphasize -- I think others have said this, but, you know, what you learn from modeling, as much as, you know, what you can explain in the real world is what you don’t explain.  I mentioned before how, you know, for seniors, we didn’t explain well.  And this had us go back and actually do some empirical studies.  We’re also finding that for 18- to 24-year-olds, the model doesn’t explain well.  And this is an area where we need more research.  But anyway, so, I mentioned we want to look at quantity.  We have a quantity component in the model.  

Here’s the results where you bring the quantity and the prevalence component together to look at overall consumption per capita.  And you know, quite frank -- to be honest with you here, the first couple of years we used to calibrate the model, we validated over this period.  In other words, this was the period we used to try to see -- get better parameters of quantities, since the estimates in the literature were somewhat weak.  And what you see here is, I think we predict almost embarrassingly well.  You know, when I see things predict this well sometimes I’m suspect.  But the other thing, again, is to notice -- and I think it’s important in validating models, is again, we’re explaining turning points.  That is, our model does well compared to a linear trend line.  

Next is the time model, and I bring this in because Thailand has been a really amazing country in terms of tobacco control, so it’s one I really wanted to look at.  Notice, they’ve had some really effective policies.  And, ag -- and so we did the model, and over the, you know, period of time, we looked at -- the model did, I would say, quite well.  You know, the beginning point, the end point, even the last couple of points are right on.  And also, the trend over this period is, appears to be -- well, it is very close.  Where we failed is actually -- or where we didn’t predict so well is very interesting: in the mid ‘90s, and then at 2000, 2001.  So I went back and looked at descriptions of policies in Thailand.  

What I found, and you know, this came out very clearly, was that the tobacco industry was really doing all they can to avoid the advertising ban, which was one of the major policies implemented there.  What also occurred here was -- which was somewhat a reflection of the -- the actions of the tobacco industry was -- at this point, a very important NGO, Thai Health was created, and they’ve been very effective at getting the policies implemented and enforced.  So these are feedback loops, which, you know, I eventually want to incorporate into the model.  And again, what’s important here is what we learn from where the model does not predict so well.  

Okay, now -- there’s three -- you know, we originally did the model to look at policies, justify the use of policies, and so on.  In other words, you know, from the literature, project forward what kind of impact the policies will have.  What we’ve also done is use the model to distinguish the effects of policies in the past.  And I’ll use the Thailand model as an example, because I think we do predict quite well there.  And compared to statistical studies, where you have many different policies going on, it’s very difficult in most case -- I haven’t seen one study which distinguishes more than two tobacco control policies at a time, even though usually there’s many different policies going into effect.  So, what we do is, we look at the effect that policies have, and use this as a justification for future policies.  And we’ve done this in California and Arizona, but in particular, we’ve done this for Thailand.  And so what we do is we set the model to the initial year policy variables, run it, then compare it to the policies actually implemented.  And from that, we can look at -- oops -- the effect of policies.  

And you see that, you know, according to our model, which predicts quite well the effect with policies, if the policies weren’t in effect, you’d have a much slower decline in smoking rates, for males.  For females, it would probably be going up.  For males, you know, it would -- it would probably have gone down at a very slow rate.  With the policies, you see a 25 percent reduction compared to what it would be.  Now, we can’t actually distinguish the effect of particular policies, but -- except insofar as what the model attributes.  But useful to -- to policy planners is to say, “Look, you know, according to the model, you know, based on the parameters on the best estimate, the effects are such that, you know, 44 percent is due to price, 43 percent to advertising bans, and so on.”  So again, it provides an important justification for future policies based on the effect of past policies.

Two more purposes of the model: one is as a heuristic device.  Again, this is something that many of the speakers have -- have emphasized today.  And -- you know, heuristic not only to academics, hopefully -- and not only in bringing together the different research, but also again in finding out what we don’t know.  But we’ve tried to make the model so it’s heuristic to those who implement policy.  We’re working now -- we have a grant to work with Kentucky.  We’ve been working very closely with Thailand and Malaysia.  And they’ve been using the model and what we’ve tried to do is, we give a workshop and we go through the model.  And what I’ve done for countries is developed Excel models so they can actually see the guts of the model.  They can actually use the model.  Being on an Excel platform is something where they’re familiar with the programming language, if you will.  In other words, they could work with the model.

Finally, you know, as -- in working with the states, we’ve tried to make this part of their planning system, not only in terms of, you know, planning the effects of policies, but also as part of their broader surveillance and evaluation system, to help them determine what data they need to collect, how finely they need to collect the data -- in other words, by demographics and so on, help them with evaluation methodology, when they do studies are they within the ballpark or not, and so on.  So, in a sense, the model is dynamic in two ways.  It’s a dynamic model in that it predicts models over time.  But it’s also a dynamic modeling process.  And I think Dave Abrams mentioned before, one of the things I think that is an important focus is to think about not only how to develop these models, but how to adapt the models themselves over time as we get new information.  Thank you.

[applause]

Male Speaker:  

Okay, can I ask the speakers from this session to come to the table?  We’ll have a slightly truncated Q and A period so we can get to the panel discussion.  And I’m going to ask Stephen Marcus to -- to lead the Q and A session.  Stephen is the senior editor of Tobacco Control Monograph at NCI -- has been very helpful to us in making this meeting happen, and is one of the great enthusiasts for complex and systems modeling at NCI.  Stephen?

Stephen Marcus: 

About 20 minutes?  Okay.  So, I actually just want to be one of the first to thank George and Carl and the whole planning committee for, what I think, has been a really terrific symposium.  So, thank you.

[applause]

Just sort of listening to the hallway conversation, I think I’ve been transported to another plane where everything is so interesting.  It’s like I go here and then I go there.  I want to be on this conversation and that conversation.  It’s really been terrific, so thank you.  And I wanted to make one brief comment about the -- the session, which I really loved.  I really thought it was terrific, because I think that systems thinking and systems modeling are different.  You can use modeling to help you think about how you should do this sort of thing, but I do see some distinctions, and I think the session did a really good job of showing how modeling can be used to help us think, but there were also, I think, some terrific presentations by people that didn’t show any modeling, but yet really showed how systems thinking is a way of thinking about asking the right kinds of questions and, how you go about asking those questions.  So, I think it was terrific.  So why don’t we start with the questions.  This side?

Rob Steiner:

Rob Steiner, University of Louisville.  I was impressed with Mercedes’ presentation, by the fact that it was followed, you know, by Ary’s.  And you spoke about El Nino and the change in periodicity of a disease, and Ary spoke about body parts and systems in an incredible fashion.  Help me with defining the scope for modeling?  

Male Speaker:

Mercedes is going to help you out with that question.

Rob Steiner:

And it’s a serious question, really [laughs].

Mercedes Pascual:

No, no.  I have no doubt, but perhaps too serious.  Let’s see.  So, you would like to -- were you looking for some similarities in the process of modeling from the two perspectives, or looking at the population level, physiological levels?  Can you be a little bit more specific?

Stephen Marcus: 

Let’s -- let’s say that we were looking at cardiovascular disease, you know, from a complexity, physiologic perspective.  It seems to me that there could be confounding factors that might have to do with things that we might never consider, like El Nino, and you know --

Mercedes Pascual:

I -- I would --

Stephen Marcus:

I’m really trying to get a handle on how to define the scope of research for a real scientific investigation, from the perspective of systems thinking and mod -- and modeling complex systems.

Mercedes Pascual:

Yes, I see there are some analogies, obviously, between the two types of talks and even the studies in those areas.  You were asking -- I think you mentioned El Nino, but in this case, in the physiological studies, you may think of something driving the system that may be very well be, even some signal that -- that these parts of the -- the physiological part of the -- well of the individual, but doesn’t cover strong feedback to the -- to the variable you are interested in.  So in that -- in that case, I’m not sure, but you can have some examples of drivers that are part of the system that just function as an -- essentially as an input to your -- to the variable you are measuring.  In that sense, you could use similar approaches, very similar approaches.  I think the -- in terms of some of the -- help to model it.  

And for example, we have modeled the system, in some cases, with some time series models that have -- that are inspired from neural networks, not neutral networks, but neural networks, so that we were making no assumptions initially about the dimensionality or which variables were important and so on, and -- types of analysis that have been used to very different types of nonlinear signals.  The strong difference there, I think, is mainly that, well, from my perspective -- I have a strong envy for what they do, because they have types of data that we will never have at population levels.  That is unfortunate, because I think if we had those types of data, we could do much better at all these goals, like early warning systems and so on.  So it’s fantastic to -- I think it’s one of the areas in biology where you can actually compete with some of the things physicists measure in the lab.  

But in terms of looking at what you call the system, and what you call the drivers or these sort of external variables, I think it’s only a function of to what degree there are feedbacks.  But from what you are defining as your system, and something like El Nino.  In the case of cholera, it’s obvious that there is no feedback hopefully, in that -- in that direction, and I think there will be some -- perhaps you can --  

So the definition of the system will have to do with the relevant variables among which there are -- there are feedbacks and others will be considered drivers or variables that you -- that you may want to analyze in the same way you analyze climate.  I’m not sure I’m getting an answer to your question.

Ary Goldberger:

Yeah, man, I think your question is so -- goes so far beyond the capabilities of modeling at any level that it -- you -- it’s -- the challenge very daunting.  The only -- there -- whether El Nino, and to what extent it affects an individual’s health, you know, is -- it’s not at all clear on -- you know, in any daily circumstance or cardiovascular health, as you say.  But what I can tell you is that there are certain major external events, which are major stressors, like earthquakes and 9/11, which were followed by a huge spike in sudden cardiac death through stress effects.  So where you’d have some external event that clearly caused a major change in outcome, that would not have been anticipated, but from an individual point of view – we’re looking at with time series, or what goes on, in -- it’s sort of intra-individual, and in the physiology, say, of heart failure or of aging and so forth.  And so the connection to the very elegant work that Mercedes does, where they’re looking at incidence of an -- of an infection, which may be cyclic, and may be driven by some periodic phenomenon going on -- on a planetary basis is different. 

The one thing that would connect them, and it wou -- it’s not going to be particularly satisfying, I think, in terms of the real gist of your question, is that the nonlinear dynamical modeling, which would involve -- goes back to the Huygen’s -- the oscillatory model, of coupled oscillators -- that there may be commonalities to this sort of thing that would be of interest mathematically on the different scales.  But beyond that, I don’t think that there’s any ready answer to what you -- the challenge you pose.  

Mercedes Pascual: 

But if you measure two different measurements in the body, something that could be part of the -- perhaps the nervous system or something that could be, some other, -- let’s say other system, I don’t know the right terminology.  And you had measurements on both, you could measure both, and one was responding dynamically to the other, or you wanted to know, and there were no strong feedbacks in one direction, you could use very similar approaches.  So it wouldn’t be El Nino, but it -- it would all be within the individual, but it would still be a question of trying to determine to what -- to what degree it’s a response of the intrinsic dynamics of the system, or whether you will benefit from so -- measuring some driver, also.  So I only see an analogy at that level.

Ary Goldberger:

Yeah, and one of the great challenges is because physiology is, I mean the heartbeat is one signal.  It happens to have multi-factorial inputs and affect other signals.  But what you -- it’s really very much like a symphonic score, where you have all these different instruments playing and talking to each other, and the crosstalk, and how one signal influences another, and what -- once again, causality is a very murky notion in these multi-signal types of networks.  You know, what causes what, is -- and what you get are emergent processes and then feedback where things interact, they cause some larger scale change.  And the larger scale of change feeds down, so it’s both bottom up and top down as I mentioned.  The mathematical tools, actually, for that, probably have not been developed.  So that’s a huge challenge.  The mathematical --

Stephen Marcus:

That’s what I needed to hear.  Thanks.

Ary Goldberger:

-- tools are not there yet.  So I -- so I think that’s – so you throw down a major gauntlet, but unfortunately, we don’t have the heft to pick it up yet, but it’s a good, this is the right place to pose it.

Male Speaker: 

It’s a great discussion.  Let’s go to another question.

Diane Finegood: 

Diane Finegood, Canadian Institutes of Health Research and Simon Fraser University.  

I guess this is more of a comment, and maybe an extension of this last discussion that was just taking place.  Dr. Goldberger, you argue that disease is the loss of complexity, but it’s also possible, if you take that up to the public health level, that disease is when the system’s complexity exceeds the complexity, and therefore capacity, of the individual to respond to that complexity.  

So, and here I like to think about again -- I’ll bring it up, the situation of obesity.  Where, I’m not sure, maybe the public has lost their capacity to deal with the complexity of their environment, which is incredibly complex when we think about all the different factors that affect food and physical activity related behavior, right?  But it also speaks to the notion that if your capacity to deal with that complexity is exceeded by the complexity of the environment, you may fail in that kind of a systems thinking approach.  But it also suggests to me that when we start to think about solutions, it really speaks to the nature of the solutions, because in public health, we talk about, well, we need to make the healthy choice the easy choice, so that people make the healthy choice more often.  And I think that is probably true, but that’s challenging.  It may also suggest that we have to find interventions and solutions that increase the capacity of the individual to deal with the complexity of their environment -- therefore increase the complexity of the individual themselves, and therefore, increase their capacity.

Male Speaker: 

Thank you for that comment.  Going to this side.

Female Speaker: 

Lily [unintelligible], UCLA.  I have a question for Dr. Goldberger.  It appears that stochastic resonance is possible in systems that have some sort of a natural oscillation frequency.  So, if you have a healthy system, where you have complex signals, you should not be able to observe stochastic resonance, whereas you should be able to observe it in an aging or diseased organism.  I would be curious to know if there are actually any studies that observe stochastic resonance in a -- in an organism.

Ary Goldberger:

So, what you’re referring to these -- in Jim Collins’ work of having subsensory noise, which -- as an input in enhancing balance control, where there was a connection to quote-unquote “stochastic resonance,” or that was at least the motivating, one of the motivations for trying that input, whether it -- whether it, in fact, is to true stochastic resonance where -- noise --what the actual mechanism there is, is not entirely clear.  But my recollection is that, even in younger healthy people, that the noise did, in fact, have a positive effect on their -- on their balance control.  Madalena, did you recall?

Madalena Costa:

[Inaudible].

Ary Goldberger:

Yeah, so the interesting -- that’s Madalena Costa, who did the analysis of the complexity of the dynamics.  But -- so, in younger people who have, you know -- it’s not an optimally complex balance system or a highly developed one -- but intervention with noise still had some subtle effect.  It was -- it was positive, but less so than in the -- in the older individuals.  But that’s an interesting -- that’s an interesting question.  It’s probably the -- sort of the classic stochastic resonance model where you have two wells or something.  That doesn’t apply in physiology, where you might have an infinite nested type of network of responses.  So that’s an open area.  It’s a very interesting challenge, though.

Female Speaker: 

Thank you.

Male Speaker: 

Do we have time for one or two more?  

Male Speaker:

Yeah, [inaudible]

Male Speaker:

Okay.  

[laughter]

Male Speaker: 

Well, I was going to give one, but I don’t know about the two.  

Male Speaker:

Two.

Male Speaker:

We’ll get two more.

Male Speaker:

Two.  It sounds fairer that way.  

Male Speaker:

Yes. 

Male Speaker: 

So, I’m trying to draw the connections between agent-based modeling, systems dynamics modeling, compartment modeling, and complexity modeling, as Ally -- as Ary presented it, or chaos-based modeling.  And -- and I want to back into that by asking Ary -- and perhaps some of you can comment also.  In your very interesting work, have you considered developing agent-based models or other kinds of models, which generate the loss of complexity?  So for example, modeling the changes in the communication feedback and feed-forward between all the systems that contribute to balance, or that contribute to the patterns of -- in the EKG that you see.

Male Speaker:

So, one of the problems is terminology; what people mean by agent-based modeling and if -- if cellular automata are an example -- or is a subset of agent-based modeling, which according to some it is, then there is a nice sort of toy model of -- network model that Luis Amaral and Albert Diaz Guilera and our colleagues developed.  It was -- so the mathematics of it involves having these nodes around.  It’s a combination of bullion and a cellular automata model.  And so what happens is if you have just the -- if you have -- within a range of the right amount of noise, you can get the type of fractal scaling that you see, sort of, in physiology, but not as subtle.  

But if you break connections, you -- if you disconnect some of the components to a critical extent, you isolate them, and then you have a loss of complexity in the output.  Or if you have too little or too much noise, you actually can degrade the complexity of the output.  So that’s a very -- that’s a toy model that has nothing explicitly to do with physiology except in a metaphorical way.  But what’s interesting, and what is physiologic in a sense, and may have to do with aging, is -- what we know what goes on with aging is that you degrade both the -- there’s a dropout of cells, say, in various parts of the nervous system in cardiac cells, and also the connections are degraded, so -- so that’s interesting to the extent that that may be a mechanism of sort of the geriatricization of the senescence of the -- of the system and a loss of complexity, but that’s a loss of information in the system.

Stephen Marcus:

Okay, and I think we have time for just one more.  So, Mitch.

Mitch Waldrop:

Mitch Waldrop.  It’s a question for David Levy.  You built this absolutely awesome model for how to disregulate and discourage one kind of addictive behavior, namely smoking.  How about -- to what extent can you adapt it to look at regulating and discouraging other addictive behaviors like gasoline use, or -- pick your choice, or illicit drugs for that matter.  And as a follow up to that, have you ever encountered any opposition, hostility, from elements who don’t want to see regulation be effective?

David Levy

Well, first I’d like to thank you.  And yeah, these -- there are policy models like this in other fields.  And in terms of my own work, I’ve been working towards developing models in alcohol control policy, and hopefully I’m going to have the time for that in the next year.  But also an area which I have gotten into is obesity policy, which in many ways is just much, much more complex.  What’s nice about smoking is it’s well-defined, like gasoline use, so gasoline use would be a nice one to maybe look at next.  But when you get to obesity, because you have exercise and you have eating and then the interrelationship between exercise and eating, and then you have policies affecting usually consumption, maybe just at the school, or some other place, you know, at McDonalds or whatever.  The relationships are going to be much more complex and that’s going to be a -- I think a very, very heuristic model.

Male Speaker:

That would have to be completely a new model.  You couldn’t adapt your model to this.

David Levy:

I mean, there’d be some of the same elements.  I would try to -- you know, in thinking about even the alcohol model, it’s tough because, I mean, with smoking, because it is an addictive behavior for at least the vast majority, if not all smokers, you’d have a well-defined event.  Once you get to something like eating or alcohol, it’s not -- what’s excessive behavior.  Where is it an addiction?  It’s very difficult to define, and hence model.  So, you know, when you get to those kinds of behaviors, what’s very important is how you define the outcomes.

Stephen Marcus:

And as a teaser, if you’re going to be at the workshops tomorrow, there is a systems dynamic modeling in which they will show you a first generation model of the obesity problem.  So.  Thank you.

Male Speaker:

Thank you.

[applause]

Now I’m going to ask five people to come up and lead us through the next exercise.  You’ve met them all except for David Abrams, and David Abrams, who I’ve given the responsibility for chairing this panel of what’s next, is the director of the Office of Behavioral and Social Science Research at NIH.  This is a very influential office within the Office of the Director of NIH, which basically communicates with all 20-some institutes at NIH.  So if there’s anyone who is used to dealing with complexity and chaos, I think David would be an excellent choice.  So we’re going to have David, Ana Diez Roux, Sandro Galea, Carl Simon, and Mercedes Pascual.  And their marching orders are to speak for a few minutes -- meaning a few -- about next steps, and then open the discussion up.

David Abrams:

Thanks.  It’s the end of a long day, an exciting two days.  And I guess I’m very interested in hearing about next steps and hopefully can take a little bit of time to think about what have we learned from this, where are we, and what are -- where do we want to go with this in terms of next steps?  I just want to make a couple comments myself and then turn it over to the folks here.  A couple of things that struck me as I think about these two days: firstly, I think this is an incredibly exciting transdisciplinary sort of synthesis of new things that are coming together, and if anything, I daresay that we’re on the bleeding edge, or the beginning edge of a true Kuhnian-type revolution in terms of moving from compartmentalized, linear thinking, to in -- to the sort of phrase that the actions are in the interactions, and that we’re moving from linear causality to causal loop models and loops within loops in different cyclic timeframes that can scale up literally from nanoseconds of neurons being organized in brain circuitry all the way up to macroeconomic policies.  

And I see some of those implications here as we scale up and down.  Secondly, I think -- I’m very struck by the fact that we’ve got new technologies developing that provide incredible, rich sources of dense data at multiple frequencies and levels, which is what I alluded to in one of my questions.  And yet they’re not fully talking to or informing the people on the other side who are doing the systems modeling, and this is where the practical implications or the industrial strength modeling that was mentioned earlier comes in, in the sense that, for example, as David Levy tweaks his model and uses historical data to fine-tune the various engines in the model, it becomes much more real and much more relevant, and much more respected as hard science that could truly inform policy even against counterintuitive and policy-resistant decision-making of the kind that we see in politics, where, for example, short, immediate impact around an 18-month to three-year perspective in decision making in politics is, in fact, aligned and reinforced by the current system --

[audio skipping starts here]

[skip] adaption to the environment is a key factor here.  If there is a single grand challenge, it’s to develop some better system [skip] to schema that involve irrational and rational or intuitive thinking around the limbic -- how the limbic brain interacts with [skip] and how that weights human decision making towards a central function, which is that there’s a reward mechanism in the brain [skip] genetically influenced, but when you’ve got a reward pathway that drives a [unintelligible] goal-directed behavior, I think we’ve really got to have [skip] and I didn’t see -- very little here about those neurosciences whether it’s social neuroscience and mirror neurons that could bridge between biology [skip] imitation works in that way, or whether it’s reward pathways that drive stress and perceived stress and other goal-directed behaviors, whether it’s [skip] enormous amount of bridging that could be done by putting brain and behavior as a central bridge between microbiology and cellular [skip] mechanisms on the other hand.  

So I think there’s just lots to learn here from a huge number of different disciplines.  [Skip] and I just want to close by saying that as I represent some thinking about the importance of behavioral-social science within the NIH, my [skip] systems thinking, systems dynamic and other viewpoints here, as well as I think the integration of things like agent-based [skip] to see a more joining linking of things like agent-based models and system dynamic models, for example.  But NIH does have some [skip] across institutes for this kind of work.  And in fact, there are some programs in measures and methodology development; the National Institute [skip] quite a bit of the research, some of which was presented here by Josh Epstein and others.  And our group is going to want to try to promote more interest in this [skip].  

And I guess in closing, I think the idea of real-time data collection from multiple new technologies, whether they’re Web-based or PDA [skip] individuals over time can really be used in a feedback loop with modelers, to get the practitioners and the modelers and the real-time [skip].  [Skip] end of the day, modeling is great for informing theory as well as for refining our thinking, but at the end of the day, if it doesn’t make [skip] a quality of the species within a worldview, you know it’s not really doing -- it’s got to be practical; it’s all Kurt Lewin’s old issue, that, you know, there’s nothing as [skip] current modeling and practical implications that would make a difference in population health improvement.  So I think those are some really exciting [skip] incredible, different approaches, and I’m really excited, because I actually wasn’t aware of three-quarters of them.  

So I think just the fact that we’re all [skip] a new synthesis in a new field.  I guess the last thing that I want to say is I think development of new measures and methodologies are important biomarkers of [skip] because the current measures, biostatistics and methodologies are inadequate, because we’ve got a new view of the world, and therefore we need to create very [skip] transform the behavioral and social sciences dramatically.  To me this is like the discovery of the telescope or the electron microscope for the behavioral and social sciences [skip] time; social support, social stress, social phenomena in ways that we just couldn’t do ten years ago because of the technologies and these approaches that [skip] and then we’ll move on.  I don’t know who’s going -- do you want to just start and go clockwise?

Female Speaker:

Okay, I know -- can you hear me?  I know everybody is [skip] and my comments will be very much from the perspective of someone who does population health and epidemiology, and is interested in the substantive questions that we want to answer in population health.  [Skip] the second two are a little more practical, maybe not as practical as we’d like, but a little more practical.  So the first point I want to make is, I think one of the main contributions to [skip] of systems thinking, or complex systems thinking, or complex adaptive systems thinking is precisely that it stimulates us, and maybe even [skip] than we often do.  It allows us to think about feedback and nonlinear facts; it allows us to think about the possibility of unanticipated effects; effects distant in space, time [skip] and robustness.  

So in a sense, it allows us to recover a holistic approach which public health and medicine had in its origins, but [skip].  And I think this is especially important, just the thinking about it, because -- especially in today’s epidemiology, and in public health generally, we’ve become [skip] certain extent.  And because the methods have come to constrain not only the types of answers that we get, but also the types of questions that we formulate, and the ways in which we [skip] thinking is incredibly valuable, and potentially very liberating to the field, even if the models we come up with initially are very simple, and actually very [skip] type of thinking.  I think that will be useful.  And it may even be the case that experimenting with these models or with these new approaches will allow us to pose new questions [skip].  That may include experiments, that may include some of the traditional observational methods, which by no means -- I don’t think we should throw out the window at all.  

And [skip] generally; so, a combination of methods.  The second point I’d like to make is, I think potentially another important contribution of complex systems thinking to population [skip] David’s comments yesterday to try to develop a theory of this thing that we call population health.  And this [skip] biological, the individual, the population, the individual, the group.  I think people have been trying to do that for a while, and I think we’ve accomplished it to some [skip] although we haven’t articulated it in as precise a way, with a precise language and with the rigor that perhaps learning more about this would allow us to do.  And I think they could [skip] realize that we don’t really know what we mean.  And I think it’ll challenge us to overcome some rather simplistic and vague thinking [skip] like the causes of population health are different from the causes of individual health which are common, I think, in a lot of the epidemiologic and population health literature, [skip] clear enough terms to be able to try to understand exactly what it is that we’re saying.  

So I think this complex systems thinking may help us do that.  [Skip] two more philosophical points; the third point, which is a little more practical, is that I think -- you know, we really need to think about what specific, what specific population health [skip].  And I think here we need to distinguish complicated from complex in the sense in which we’ve been talking about it at this meeting, because everything is complicated.  And, you know, for complicated stuff we need a whole bunch of different approaches [skip] here, which is a much more specific definition.  And I think we need to -- in order to identify the types -- in [skip].  One option is to identify the fundamental types of questions or the features of questions that complex systems approaches may be [skip].  [Skip] very clear from infectious diseases, because infectious diseases arise from people interacting with each other because they get stuff from each other.  

And you’ve seen this in many examples; virtually all of the [skip] it’s also, you know, pretty straightforward for things -- for other things which may involve contagion-like behaviors, although, you know, [skip].  In any case, there are analogies.  But what are some other fundamental, you know, types of processes suitable for these approaches?  And clearly, you know, one obvious one are process [skip] there are plenty.  And, you know, other examples include situations where networks or contact structures or interactions between individuals are [skip] processes operating at multiple levels or scales.  So, try to identify specific problems which involve these types of things, but specific, very specific to population health questions [skip].  [Skip] what new insights we can learn applying these approaches to these particular questions and contrast those to what we would get if we use a standard approach, and see what the difference is, and show what the new [skip]; I think that’s, you know, that’s really what we need to do if we want to incorporate this.  

And here I just want to emphasize the challenges of moving from infectious diseases to chronic diseases; it’s not going to be simple.  Chronic diseases are much more [skip] first of all are multi-factorial, infectious diseases are also multi-factorial, but at least there’s that agent, that you have to have that agent plus other stuff.  In chronic diseases, you might be able to [skip] very much.  The lag times are very different for both types of diseases, although there are infectious diseases with very long incubation [skip] to infections, and therefore, you know, you can -- things that we’ve learned about applying these methods to infectious diseases can be transferable to behaviors.  Here is our [skip] and distant, and so we’re not going to get that much -- well you know, I think it’s important to look at behaviors, but it’s not going to be the whole answer.  [Skip] last point I think that I want to make is that although we’re -- you know, we’re interested as epidemiologists in understanding processes and sort of the intellectual challenges [skip].  

And I think this is a strength of epidemiology which we sometimes forget, you know, sort of in our self-flagellation about how terrible [skip].  The strength that we have is that -- in that we are very grounded in data, in empirical data, much more than many other disciplines, because that’s our purpose is to apply our knowledge to the real world.  [Skip] don’t become just clever tools or clever games that we can show to people, but really help us understand reality and act on it.  Thanks.

Male Speaker:

I’m also an epidemiologist and come at this experiment from a population health perspective, and [skip] I knew I was going to start after Ana and I suspected she would make some of these points lightly and [skip].

[laughter]

It’s sort of a -- here are my three points.  My first point is during this meeting, which I have found immensely stimulating, I’m terrible [skip] so I really, the fact that it held me was great, is why are we here?  And we articulated this meeting sort of as complex systems approaches to population health, which is if you think [skip] achieve that title, because what we’re trying to do, of course, is we’re trying to forge a meeting out of two very distinct traditions.  Now, both traditions [skip].  Be that as it may, it emerged, I thought quite clearly, that there are two very different traditions, and their difference is rooted in a word -- they’re traditions [skip] a lot on abstraction and elegant theoretic formulation, and the other one, which is sort of the one that I dwell in, rests much more on substantive and pragmatic and [skip] where they’re at, but in fact, of course, both have strength in terms of where they’re at.  

But I think it’s important that we recognize it if we’re going articulate complex systems approaches to population health sciences we really [skip] additions of abstraction and pragmatism that really are strange bedfellows.  And there were a couple of talks which influenced me a lot, which sort of tried to bridge this gap, but if you think [skip].  He actually sort of did the first half of his talk on abstractionism and the second half of his talk on pragmatism rather than sort of truly seeing [unintelligible] integrating them.  So, clearly, although I don’t [skip] there are two [unintelligible] traditions that we are trying to bring together and it’s a very, very hard thing to do, and although I think there were -- that this room is filled with very smart people, it’s not my impression that we’re achieving [skip].  What was the message that emerged from this; what did I get from this?  

Well, I thought Stephen Marcus actually captured nicely the essence of what I got from this, and that was the fact that there are two [skip] complex systems methods and there’s obviously argument about what the methods are and what they’re called and whether -- what emergence is, and what a complex system is, and that’s all fine and good for graduate classes [skip].  It’s very clear that we need movement -- just wondering if Carl was frowning when I said something [laughs] -- I think it’s very clear that we need to advance on [skip].  [Skip] quite nicely said that part of what this complex systems thinking should do for us is encourage us to think more creatively and to formulate our theories more rigorously and [skip] to do and I think some of us in our comments and [unintelligible] have complained, but I think that the two are very distinct and some of the clearest, in my mind, historic examples of complex systems thinking of course use nothing that today [skip] methods.  

Again, I thought Scott de Marchi made a very nice point; at least, I think that is what he was trying to say, that complex systems methods can become a constraint, and if they become a constraint [skip].  In the context of this meeting we’ve bemoaned a lot of our traditional descriptive, simple, linear regression approach and bemoaned how much that’s a constraint on us, but I think all methods fundamentally can become a constraint [skip].  My last point is sort of focused on next steps.  Well, I thought the point of this meeting was to disturb the comfortable equalibrium that we’re in in population health science [skip].  

I think moving forward is going to require a not insignificant amount of cleverness.  I think there are a lot of clever people in this room [skip] but I don’t think this is going to be easy, and this is sort of where I circle back to where I started from; it certainly was my sense that the two [skip] which I thought laid out a very compelling view of the set of questions that we should answer, and my estimation is -- from what I’ve heard today -- is that we’re [skip] and that’s not to -- for lack of effort or for lack of creativity, so clearly I think we need discontinuous leaps of cleverness to incorporate complex systems thinking with methods [skip] fundamentally all this is about to answer your questions of interest, and I think that the mechanics of how we do that -- we can all envision those in terms of involving students across disciplines and all that, and those are all sort of mechanics we can all think about, but I think [skip] we need to -- both are sides of the tradition, of the fences of this tradition, shake what we do.  And if we truly think that this is a way forward, we need to sort of shake the comfortable equilibrium of what we do and [skip].  

Female Speaker:

Well, I’ll be really brief because I see -- I think that Professor Simon has here at least a page [skip] many things have already been said.  I have one point, which essentially reiterates something that David said even yesterday about -- I think one of the big challenges [skip], but the integration -- better integration of different organizational levels needs to happen, but also in view of asking how relevant it is, not just to do it.  I’m slightly concerned with the terminology [skip] to me we have been doing this in ecology for a long time and it’s different from complex systems.  And it seems to me that it could be sometimes we label, just as reduction is at a new level, which is just [skip] that was not complexity.  So it seems like suddenly molecular biology has discovered that you needed more than one regulatory.  

Now, what I mean by that is that it would be wonderful if we could sort of do things [skip], well, how much do we need to integrate within host and between host dynamics; that’s just one example.  Perhaps, you know, evolutionary and population level issues; that’s another example.  And at even [skip] economics behavior, and I think there is a great opportunity to merge that with what we see as population dynamics of disease.  There is a bridge there that we use these types of techniques, but needs to [skip].  And the final point is about data.  You talk about new technologies.  I think that one of the greatest limitations, at least in my field, is data, but not even new data.  

[Skip] prediction, it would then weather prediction, for example.  And we are doing it with a number of time series I can count on my hands.  And this is for problems like malaria that are killing millions of people [skip] some people have them.  There are very few that are not even good data sets.  We don’t even have these historical records, and this is not even with new data.  I think one of the challenges is sort of continuing these surveillance programs [skip] so I agree with you the data is terribly important, but also to sort of have ways to share it and to develop something that -- I think when the climate people have [skip] much more data collection than we do to solve these difficult problems.  So, those are some of my points.

Male Speaker:

Thank you.

Female Speaker:

You have two hours.

Male Speaker:

Okay.  You have five minutes.  

[laughter]

Male Speaker:

[Skip] begin by agreeing with Anna and Sandra on one point and maybe disagreeing on another.  Mike [unintelligible] might frown.  First of all, if we’ve learned anything, we certainly did learn the difference between complicated and [skip] and I’ll bet half of us didn’t quite understand that difference, and I think hopefully it became sort of clear.  I like the Maurice Ravel quote that Ary [skip] agree.

[laughter].  

The part I -- I’m not sure about this dichotomy between abstract and pragmatic or data organization and data driven.  In fact, that scares me.  I hope that’s not true [skip] data, but it’s also critical to begin to have a theory to organize it, to learn from it.  I’m thinking of the work Jim Coltman and I did on estimating the [skip] pragmatic, but if you just use data, say, from in San Francisco, you know, you have great data on disease and people answered every [skip] from or when they got it.  

And so, you know, hanging it together with a theory and merging the two just seems crucial, or Mercedes’ work on the effect of El Nino [skip] all these data, but putting -- finding the hanger to put it on and sort through to see the difference or -- or Mercedes and Katya’s work on predicting influenza.  We have incredible data about influenza [skip].  You know, how the data -- what the patterns are.  And how the micro and the macro interact.  Boy, I think there’s -- I think that’s powerful stuff that needs [skip] data analysis -- you know, and theory.  

I do agree very much with Sandro about -- you know, there were probably no talks directly on complex systems and population health.  [Skip] were locked in a room for a few days, maybe we’d throw in Jim and Diane and a few others to round out.  You know, some modelers, some data people, data-driven; others who [skip] involved and people who are more concerned about modeling.  What could we take from this meeting to help us?  I think there was a lot.  So for example, the social science paradigms, micro [skip] transmission, the infection trans -- you know, contagiousness, infection, and behaviors and thought processes.  And then the networks that Mark Newman talked about would be a key piece about how we’d study [skip] need to know who’s connected to whom.  And actually, the talk I thought would least fit maybe fit the most, and that’s Jasmina’s talk on economics.  That game that she showed, you know, [skip] capture, you know, the decisions one makes even implicitly about what to eat and, you know, how -- what behaviors would run your life.  I think that would be a great one [skip].  

[Skip] those and we put in, so Axtell and Epstein told us about agent-based modeling and de Marchi told us about computational social science.  And Kristin and David had compartmental [skip] data and put it together.  And then Dave Krakauer and Jim Koopman and Ary Goldberger talked about sort of the philosophy that you’d think about as you [skip] from -- I think we’ve had a successful session just by -- you know, if we knew nothing but what we learned during the last couple days.  But I did miss the -- you know, the talk that [skip] and that, you know, we’re beginning to have a day tomorrow, going to show us systems models of obesity and diet.  You know, it would’ve been great to have that here because it’s sort of would tie together, to see the beginnings of it [skip].  [Skip] population health and the things we think about meet the criteria for complex systems so completely; it’s such a magnificent match.  So, what’s next?  You know, maybe locking some of us together and [skip].  

Female Speaker:

[low audio]

Male Speaker:

I -- this does -- maybe on an island, but yes, we’re off to the -- I’m off to the Galapagos in a few -- in a couple weeks, so what I want to say is the proof is in the pudding [skip] I’m really -- I’m going to close.  A lot of us put a lot of work in.  The totality of all the work we’ve put in probably didn’t come close to matching what George put in.  By the way, George designed that [skip].

Female Speaker:

What’s the picture?

Male Speaker:

It’s abstract, about all the things we care about.

[laughter]

If you understand that poster, you’ll understand population health.  And I’m very proud, again, at the [skip] because the Population Health Institute group that -- the center, and the Center for Complex Systems are somewhat unique, and -- but we’d be glad for this meeting to be transmitted around the world.

Male Speaker:

Well, thank you, that [skip] comments from anybody in the audience who’d like to say something either mundane or profound?

Male Speaker:

No profound.

Male Speaker:

[laughs] Go ahead.  Yeah, go ahead [skip].

[low audio]

Male Speaker:

-- and there’s lots of skills [inaudible] and so I recommend that instead [inaudible] [skip].  I recommend that you look at the Professional Science Masters degree programs [inaudible] [skip] programs are easy to learn about; just go to www.sciencemasters.com.  

[end of audio skipping]

A hundred and eight programs, masters degree programs, [inaudible] are listed there, [inaudible] a broad range of sciences.  And they include about 15 programs in applied mathematics, financial mathematics, industrial mathematics, [inaudible] and such, and these are programs that train young people in becoming project-oriented modelers.  Leadership will have to come from your profession [inaudible], but the nuts and bolts of modeling and getting that work done is best done by modelers, and that’s an excellent training ground from which to recruit.

Male Speaker:

Thank you.

Male Speaker:

[inaudible] particular kinds of programs [inaudible] Foundation [inaudible] Professional Science Management [inaudible].

Male Speaker:

Thank you.  Just keep the questions or comments short, so we can get as many in as possible, thanks.

Barbara Cremgald [spelled phonetically]:

Okay.  Barbara Cremgald.  I wanted to thank Ary Goldberger for taking complex systems thinking from the realms of science and economics to music and art, and I had wanted to ask him, but I’d just like to ask people here, when they get to work on designing a theory of health, to keep that in mind, the sort of mysteries of art and music that we’re capable of, as well as sort of rules and systems from science and econ.

Male Speaker:

When David Krakauer came, I meant to ask him to give a talk on complex systems [unintelligible] he has just done that at the Georgia O’Keefe museum in Santa Fe, so where he led sort of a docent tour, sort of connecting a lot of the things we’ve talked about.  But there are natural connections.

Male Speaker:

Okay, go ahead.

Male Speaker:

I’m [unintelligible] from the University of Massachusetts.  I’m a bio studies student, and I work on [unintelligible] data, so in our field, well, we’re most concerned with the quality of the data, and how did [inaudible] connected, supporting the statistical tests in systems modeling approaches.  So, could you provide some guidance in terms of how should we design a study to connect the data to support more [unintelligible] the system models?

Male Speaker:

Thank you.

Male Speaker:

Well, I mean, that’s sort of, I think, the whole thrust of this meeting, was to give examples and to think about it, that’s -- so if I understood the question, it was some guidance on taking systems models, analyze data in special areas, but, you know, that’s -- it’s not an algorithm; it’s sort of an art, a skill, a way of thinking about things, and, I mean, one of the reasons that -- to advance the topics we’ve talked about here, I think, will take quite a while, because of the art and skill piece.  So I don’t think there’s a nice, short answer.  It’s about, you know -- it’s taken me 40 years to learn the little I’ve learned, and hopefully maybe they will -- so, one example might be the workshop tomorrow, that Stephen Marcus mentioned on systems thinking in health.

Female Speaker:

I was glad to see the transition in one of the final presentations that talked about the implications of modeling for public policy.  One of the things that we’ve been tackling is this recent phenomenon, over the last 15 years, of institutional abuse of teenagers in a new form of residential treatment across the country, and despite the fact that there’s been some proposed federal legislation for this issue, it hasn’t yet passed, and one of the things we’ve recently developed, because I think we need to start thinking not only about public health and research differently from a complexity perspective, but also about what this then means for policy, and I think it means that we don’t necessarily have the privilege of presuming that some of us can clearly understand the phenomenon and design policy interventions and then get stakeholder buy-ins so that we can roll them out with fidelity.  

I think that it’s really about a co-creative policy, and we’ve developed an online method -- developing an online methodology called Wikipolicy, where people who’ve actually been experiencing a given phenomenon that seems like it might benefit from a policy can share their perspectives with each other, and can comment specifically on proposed policies, so that we can truly co-create with the very folks who would be living in the systems that the policies would be affecting.  So --

Male Speaker:

Thanks.

Female Speaker:

-- I think that this is an important thing to keep in mind in addition to the implications for research.

Male Speaker:

Okay, thank you.  Let’s just do a very quick -- because we want a couple minutes to wrap up at the end, so we’ll do our best to --

Diane Feingold [spelled phonetically]:

I’ll be really quick.  Diane Feingold, I -- Carl, I’m not sure how I feel about being locked in a room with you, but on the other hand, I am -- I do think this was a very good start.  I’ve worked in multiple areas, or across disciplines for a while, and as a first step, you know, it was a good shot, and we weren’t really always talking to each other; sometimes we were talking past each other, but that’s a good first step to get to know each other and recognize each other and hand each other cards and stuff like that.  So I look forward to the next opportunity to do this, where we can now begin to maybe put a solutions orientation to the discussion.  We can learn to talk to each other better, so that we’re not passing each other as ships in the night, and do that, and certainly, I’d be happy to help in any way that I can to make that happen.

Male Speaker:

Thanks.

Male Speaker:

One question, Diane, before you go.  Do you think -- a comment on my statement, if you would, that I think -- if we took only what we learned at this meeting, it would be a good basis for such a working group.  

Diane Feingold:

Oh, absolutely.  Absolutely.  There are some missing -- there are some gaps, some definite gaps in topics that weren’t talked about at all, and I don’t mean obesity, or -- you know, but topics like organizational -- complex systems in organizations and how that relates to public health and a few others, so I think there’s a few other people we might want to draw into the tent in that discussion.

Male Speaker:

Okay, thank you.  Apparently there’s a bus that’s leaving at 5:30, so we really have to -- or close to 5:30, so let’s do a quick wrap up, and then George wants to have the last word.

Male Speaker:

So, I think we should take a multi-pronged step forward.  I think we need to have people who are really concentrating on advancing the area of science; people who are really concentrating on it, the areas of policy, and people who are really concentrating on advancing the methods.  But if you have those three separate, they don’t work.  We need a center for the study of complex systems.

Male Speaker:

Thanks.  I agree with that.  

[laughter]

Let me just take a quick opportunity to thank --

Male Speaker:

Thanks to your mouth [inaudible] later.

Male Speaker:

Let me thank everybody as well, both the audience that have been wonderful at contributing to the ideas here, as well as the organizers, particularly George and the group who put this together; that was a lesson in complexity.  And I think the first step in trans-disciplinary integration is just learning from each other what the paradigms and languages of the other groups are, and you can’t really expect to go much beyond what we learned here today.  The next steps would be, now that we have a basic lay of the land, what can we do to integrate and synthesize the paradigms even better in the future?  So I just want to thank George and the organizers for a wonderful conference, and for great presentations.  Thank you.

Male Speaker:

Thank you, David.

[applause]

Male Speaker:

David?

David Krakauer:

I have only a few things to say, some of which you need to know, and the rest will be short.  For those of you who are staying -- first is housekeeping stuff -- for those of you who are staying at the Marriott, there will be a University of Michigan bus waiting outside to take you back to the hotel for the evening.  For those of you who are staying at the Marriott but want to hang out in town for a while, there will be a bus -- there will be a continuous shuttle that will loop from the hotel to the Michigan Theater, from 6:00 to 9:30 pm.  How’s that for service?  And if you don’t know where the Michigan Theater is or you don’t know where restaurants are, etcetera, you’ll find maps out on the tables outside.  For those staying on to attend the workshops tomorrow, if you don’t know where the workshop is located, please ask the staff out at the table, and they’ll tell you.  

There will be two drop-off locations in the morning for a bus coming from the hotel; one at the School of Public Health and one at the Center for Social Epidemiology and Population Health.  And also, you’re asked to wear your name badge to the workshops.  Now I want to just take -- really, just two minutes -- first to thank the speakers, who I think were extraordinary, to thank the audience -- those of you who took time in your busy schedules to come and participate in this; you are as much a part of this as those who spoke, because you will be some of the agents that help to propagate this information.  And I want to thank my colleagues, both in the Center for Social Epidemiology and Population Health, and The Center for the Study of Complex Systems.  This truly was a joint effort.  Anyone who referred to it as “George’s meeting” is absolutely wrong.  

This was a joint effort; it was jointly conceived and jointly planned, and it would -- believe me, it really benefited from the multiple heads, perspectives and energy of everybody that was involved.  I also want to thank our sponsors for -- you know, to whom we can truly say, “Without you, this would not have happened.”  And that includes the National Institute for Child Health and Development, the National Cancer Institute, the Robert Wood Johnson Foundation, the Office of Behavioral and Social Science Research at NIH.  And finally, thank the University of Michigan, who has supported rather nicely the Center for The Study of Complex Systems and the Center for Social Epidemiology and Population Health.  They’re investments that we hope pay off, and I think that this meeting is definitely one of the payoffs.  

Finally, I just want to indicate that I think there are several things that need to happen.  One is, we need to learn.  That’s a two-way street.  Those who are doing complex systems work need -- if they’re interested; this is all about voting with your feet -- to learn about these problems of population health that drive so many of us; those of us who are driven by those need to learn more about complex systems.  There are techniques, there are languages, there are tools, and there are cultures that we all need to learn -- make a commitment to learn.  There’s mixing that has to go.  Without this room or some analog of it, I don’t know that we need to be locked into a room.  I don’t think we can get past that -- past the IRB, but --

[laughter]   

-- but there’s no question that propinquity breeds a lot of sharing.  If we don’t occupy the same place, it’s hard to do that.  We can do that electronically, but frankly -- maybe this is just because of my age -- there’s really no substitute from sitting across the table, or -- and that table can be a dinner table as well as a conference table.  We need to do; we need to come together, to actually do this kind of integration, and without -- obviously, that is going to take building funding sources for this kind of work.  There are some indications that that’s starting to happen, but we have to be agents of change in the sense of convincing study sections and foundations, etcetera, that this is something that not only is a good thing to do, but something that has to be done.

And finally, I think we need to translate.  We need to be able to build a science that integrates Population Health and complexity science in a way that makes it useful, that makes it intellectually interesting, and that makes it -- and gives it the ability to truly have an impact on improving peoples’ lives.  That is, indeed, what we’re all about.  There is a race going on now to see who can build the tallest building in the world.  The current one is going to be somewhere in the Middle East -- I forget where, maybe Dubai; I’m not sure -- and it’s going to be 800 or 1,000 meters high, you know, 300 stories, 250 stories high.  

What we need to do is take the effort that’s going into that building and turn it on its side and build bridges which are as long and as wide and as deep; bridges between all of these disciplines that we represent, and bridges that allow us to walk in all directions, back and forth, and with a common destination in mind, and I think if we can do that or come close, we have a chance at actually building a new approach to population health which relies heavily on complex systems.  So I thank you all for coming.  It’s been very rewarding.  Carl, do you want to say something, too?

Carl Simon:

Yeah.  As they say at the end of Casablanca, “This could be the beginning of a beautiful friendship.”

David Krakauer:

Right.

[laughter]

[applause]

[end of transcript]
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