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Ana Diez Roux:

Okay, good morning.  I think we're going to get started.  I'm Ana Diez Roux, Associate Director of Center for Social Epidemiology and Population Health here at the University of Michigan, and on behalf of the organizers of the symposium, the Center for Social Epidemiology and also the Center for the Study of Complex Systems, I'd like to welcome you to what we think will be an extraordinary and exciting two days of discussion around the issue of complexity and population health.  I'd just like to mention that numerous institutions, including the Office for Behavior and Social Science and Research at NIH, the National Institutes for Child Health and Human Development, the National Cancer Institute, and the Robert Wood Johnson Foundation, have contributed to the realization of this symposium and have helped bring all of us together for these two days.  

So really feel this is a unique symposium that brings together researchers from multiple fields and effort to create a new synergy between complex systems and population health, perhaps people who haven't really talked to each other in the past.  So, it's really a unique opportunity to bring these two groups of people together.  We have an outstanding set of top-notch, absolutely top notch speakers, from multiple disciplines, who will provide very insightful and stimulating comments.  

Because, as you know, the theme of the symposium is to think about how we might apply complex systems approaches to population health, we really encourage all you, as you hear the presentations, to think creatively, to open your mind up to how the many concepts and methods discussed might be applied to the fundamental problems that we face in population health today.  So we encourage you to really ask questions, to discuss, to talk to each other, and really to become agents that interact in dynamic ways, so that new approaches to population health will emerge from this conference and all the -- everything that we hope will grow from it.  

Just a couple of housekeeping announcements.  Unfortunately, we cannot have food or beverages in the auditorium, I've been asked to remind you of that.  And the restrooms are right outside on the left, and then to your right.  

Now, it is really my pleasure to introduce you Dr. Teresa Sullivan.  As you may know, Dr. Sullivan is Provost and Executive Vice President for Academic Affairs here the University of Michigan.  She holds a degree in sociology from the University of Chicago, and has done extensive work in the areas of social demography and the sociology of cultural institutions, two areas which are very linked to the themes of the symposium.  And so for many reasons she is really an ideal person to provide some opening remarks. We thank her for taking the time to come today.

Teresa Sullivan:

Thank you, good morning.  I'm pleased to welcome all of you to the University of Michigan.  This conference brings together a very diverse group: researchers, academics government officials, and industry representatives.  You come from a number of countries, and from fields that range from biology to economics.  This kind of mixing of different areas of expertise and the sharing it provides leads to new understandings and productive partnerships for future research.  You'll begin some interesting conversations here in the next two days.  And I'm sure that many of those conversations will continue for years.  

I want to recognize and thank Dr. Kaplan and his colleagues at the Center for Social Epidemiology and Population Health and the Center for the Study of Complex Systems for their creative and careful work in organizing this conference.  Their imaginative thinking and thoughtful articulation of it has led to a generous support from the Robert Wood Johnson Foundation and several parts of the National Institutes of Health, including the National Institute of Child Health and Development, the National Cancer Institute, and the Office of Behavioral and Social Science Research in the NIH director's office.  We're grateful to these organizations for their support new approaches to understanding complex human concerns. 

Your work here at the conference is the expiration of population health using a complex systems approach to examine areas including health disparities, the effects of globalization, interactions between social and biological forces, and a host of other concerns.  The topic is broad, deep, and important.  Population health is, to many of us, a new way of thinking about the complex processes that affect all of us.  My own work as a sociologist, for example, has included looking at the role of work in people's lives and, in particular, examining the inner relationship of work, debt and bankruptcy.  In each of these areas there is a constellation of factors at work: personal changes, policies in the workplace, federal policies, credit card and baking regulations, and, of course, the health and well-being of individuals and groups.

  I have had the opportunity to explore the relationship of bankruptcy to health, and a high fraction of bankruptcies in United States are related to either the ill health of the person filing, or the ill health or the injury of someone in their family within the year or two proceeding the bankruptcy.  Direction of causalities, however, are not always easy to figure out.  Worrying about your debt, for example, probably does not have a positive impact on your health.  It would health us to understand the complex interactions between the many facets of our lives, and perhaps develop policies that would ameliorate some of the difficulties that arise, if we could do more the kind of work, or to do here for the next two days.  

This conference provides each of you the opportunity to use your own expertise as a starting point for thinking about population health.  In fields that range from medicine to political science, you can branch out to explore relationships with other fields.  In addition, you can borrow from those fields to develop new ways of understanding what you know in your own discipline.  I can't imagine a more interesting way to spend some time.  

And speaking as the provost, I want to commend you for being risk takers, for being willing to venture into some uncharted territory.  Working across disciplines is challenging, but it's also very rewarding.  At Michigan we're deeply committed to working this way.  More than a third of our faculty have appointments in two or more departments.  They're deeply grounded in the discipline and engaged in other fields in the development of new approaches to problem definition and problem solution.  This is the direction I think of most research for the future.  And I can't think of a more important area for such work than population health.  I'm confident that your work over the next few days will reaffirm the value of interdisciplinary approaches as we seek to understand complex problems.  I look forward to reports of your discussion, and I wish you many productive conversations.  Again, welcome to Michigan.  

[applause]

Ana Diez Roux:

Thank you, Dr. Sullivan.  So moving right ahead, as you might have seen in the agenda, we begin the symposium with three framing, or overview, presentations to provide a context for the speakers who will come later today, as well as tomorrow, and we hope that we will return to some of the issues that come up in these early presentations when we attempt to put things together and identify future directions towards the end of the day, tomorrow.  

So the first two presentations this morning focus on the two intersecting themes of this conference: population health and complex systems.  And our first speaker this morning is Dr. George Kaplan.  Dr. Kaplan is the Thomas Francis Collegiate Professor of Epidemiology and he's director of Center for Social Epidemiology and Population of Health, as well as former chair of the Department of Epidemiology here at the School of Public Health at the University of Michigan.  Dr. Kaplan has made seminal contributions to population health in many areas, including areas related to our understanding of the social determinants of health, such as the cumulative impact of socioeconomic disadvantage on health, life course influences on health, the role of equity and the distribution of income on overall health populations, and many other areas.  So, George?

George Kaplan:

Thank you Ana, and good morning everybody.  I have an important technical announcement to make first.  I've been asked to tell you that there is a gift laser pointer in your bag you may have discovered.  You may it doesn't work, but actually there's a little piece of paper that you have to pull out that stops the battery from making a contact, so if you do that it will work, and they do work.  They do work great.  

[laughter]

[Unintelligible].  Now, let me figure out how to -- 

[low audio]

There we go.  So, as my colleague, Professor Diaz Roux pointed out, this is a joint effort of the Center for Social Epidemiology and Population Health and the Center for the Study of Complex Systems.  I don't know about the people on the complex systems side, but I can tell you that on the social epidemiology side the meeting -- the notion of this meeting really came -- was born out of frustration -- born out of frustration that the conventional methods that we used to understand critical issues of population health, population health disparities and trends in both of those, were simply -- we had simply lost touch with the complexity and richness of these phenomena using our conventional methods, and we felt that there had to be another direction to move.  Without hyping this all, I can tell you that we arrived at this [unintelligible] conclusion in parallel, and then started talking to each other, as we often do, and discovered that we were thinking along the same lines.  Hence, the origin of the notion for this meeting.  And it's heartening to see that so many of you share, I think, that opinion.  

Now, we need to ask where we are in our ability to understand and influence population health.  And I'll present two examples of -- that illustrate that we're really not where we'd like to be. The first slide shows the U.S. ranked among 30 OECD developed nations for life expectancy at birth and infant mortality, and then for the rank in spending, percent of GDP, on health care.  Now, in 1960 as you can see, the U.S. ranked 15th in life expectancy at birth, and in 2003 ranked 23.  I remind you that the rate of one is high, not the rank of 30.  So we actually lost ground relative to other developed countries over this period of 40-plus years.  And we lost ground also in terms of infant mortality going from 12th to 27th; that's a substantial drop.  And in fact, you know, we are lower in life expectancy at birth -- in infant mortality than a number of countries that we normally would not consider peer countries in terms of health accomplishments or socioeconomic development.  

Furthermore, and to compound the puzzle, we spend more than anybody else, and we -- and increasingly spend more than anybody else on health care. So, you can see that in 1960 about 5 percent of the GDP was spent on health care and in 2003 it had almost tripled.  So, in a period where we are falling behind relative to health performance, at least measured by infant mortality and life expectancy, we are rising to the top by a greater and greater margin in terms of spending on health care.  So that's one story.  

Another story is represented in this cartoon from a newspaper from Today's Random Medical News, and as you can see, you spin the wheels, and you get, for example, that coffee can cause depression in twins, or any other combination of these, what's the point?  The point is, according to report released today every day we're hearing about more and more and more and more becoming more and more confused, and simply not knowing whether it's good to eat fat, whether it's not good to eat fat, whether we should lose weight, gain weight, whether we should be physically active, whether we should take vitamins, whether we should trust in the pharmaceutical industry to save us, whatever; we simply don't know.  So, we have this conundrum of poor performance by some conventional health indicators coupled with high spending, coupled with a plethora of information, what are we going to do?  

Well, I want to suggest that we have to -- that our situation is a little bit like sitting at a shaky table.  So, I ask you, how many times have you found yourself eating at a shaky table in a restaurant?  You covertly adjust and readjust the placement of your elbows trying to add balance to an unstable base, aware that the too full glass of water or the bowl of soup may overflow at any moment.  Various people around the table struggle to find exactly the right thickness of napkin or matchbook to level it and all wait to see whether there will be a mess to clean up.  Some joke about sawing off portions of one of the legs.  Others are sure that it's the person across the table who’s to blame, and others simply asked to be moved to another table.  This is a little bit like we experience, I would say, in terms of understanding health and the population now.  It's a bit of a shaky table.  We don't know it's going on, and we don't know what to do about it.  

So, what could be missing from our thinking about sick or healthy societies?  What determines population health in the distribution health and the population?  Well, the standard -- the standard candidates are first, the 800 pound genomic gorilla, eating behavior.  And you all know that the newspapers went on and on about Bill Clinton's penchants for McDonalds when he had angioplasty.  Or maybe it's all about medical care, or access to medical care, or about education or about stress.  Well, increasingly we are seeing that no single factor is necessary to understand population health.  But instead, we this multilevel perspective which indicates that health is really determined by a multiplicity of levels ranging from social and economic policy to institutions, including medical care, where we live, what the nature of living conditions are, our relationships with other people, what we do, the genetic vulnerabilities or strengths that we bring with us, all of which gets under the skin to cause individual health, or population health, set within the context of the live course -- moving across the life course in the environment.  

So, where does this come from?  Where does this perception come from, that we need as cumbersome a model as this?  To explore that a little bit I want to turn the Zen koan; two hands clap, what is the sound of one hand?  I want to ask you to raise one hand to indicate that you've heard this, but surely you have all heard this.  Now, the purpose of these koans is to confound habitual shock -- habitual thoughts, or shock the mind into awareness.  Now, I don't know if I will confound you or shock you, but what I want to do is present some examples of health phenomena that simply are crying out, maybe demanding, for some analysis that goes beyond what we do conventionally.  

The first -- and here's a list of them: the unnatural history of health and its the determinants in the population, location, location, location, the life course, income inequality in health, social divides and health divides, and getting under the skin.  

Now, what do I mean by these?  Let's take the first one, the unnatural history of health and its determinants in the population.  Lets look first at GDP and life expectancy.  So here…here we show income per-capita on the bottom and life expectancy for a number of countries, and you will seen a minute, you'll see this developing over time, so this is a three-dimensional map; we're showing time as well.  And what do we see?  We see this extraordinary pattern, we see countries where increasing economic level is associated with better life expectancy.  We see countries where there's very little increase in life expectancy, and -- I'm sorry, in income per capita, but huge increases in life expectancy.  We see countries where there are -- other countries where there are large increases in life expectancy with very little socioeconomic improvement.  We see countries whether increases and socioeconomic level without increases in life expectancy.  And then we see the tremendous strategies shown here for South Africa and Botswana of enormous declines in life expectancy.  In the case of Botswana, in the face of increasing socioeconomic level, in these cases, due, at least proximally, to the scourge and tremendous toll of HIV/AIDS.  

So -- but, we see large drops in life expectancy, which are not due to things like HIV/AIDS, as well.  And -- but with the fall of the Soviet Union, there were enormous changes in life expectancy in the former Soviet republics.  And this slide shows life expectancy, by time, for the former Soviet republics and Eastern Europe.  And what you notice is that for Eastern European countries, life expectancy for males and females is generally increasing; certainly not going down on average, except perhaps in Hungary, for males.  But you see this tremendous six-year decline in life expectancy in Russia at the time of the breakup of the Soviet Union, for both males and females; six years and four years for females.  Now, for those of you who don't work with live expectancy, if you were to remove cancer and heart disease from the population as causes of death, you would affect life expectancy by three or four years.  These are unprecedented drops in life expectancy associated with social and economic change.  

Now, we also know that there are other trends related to obesity.  And here we see the increase in obesity by state, over a period of 20-some years.  And you can see it’s at --where the states are colored according to levels of obesity, and you can see -- whoops.  Well, you could see, that there is an almost epidemic increase in obesity across the states, and how are we going to understand that?  This is a dynamic change.  

Now, we also know that location is extraordinarily important.  “Location, location, location,” was the slide you didn't see.  And this slide shows some calculations by Chris Murray's group, of female life expectancy at birth in 1990 for the 3,000 or so counties in the US.  And you'll see there's enormous variation.  In fact, if you compare the most longevous group with the least longevous group, you find that there's a 41-year range in life expectancy within the United States.  And that corresponds to 90 percent of the global range in life expectancy, from males in Sierra Leone to females in Japan.  This is extraordinary to see this amount of heterogeneity within a population, and we know that heterogeneity is the stuff of which complex systems are made, or perhaps vice versa.  

Now, to give you an example on a smaller scale, there are lots of many spacial levels one can look at. And a lot of the current research on spacial factors and health, much of it done by my colleagues at the Center for Social Epidemiology and Population Health, focuses on neighborhood characteristics. This is a study that we did many years ago, Mary Haan and myself, in which we looked -- we had a cohort of people in the Alameda County study; some of them lived in a poverty area of Oakland, in California, and some lived outside the poverty area.  And you can see the poverty area had higher rates of unemployment, general assistance, disability, police workload, TV -- none of this is very surprising.  

What was surprising to us was the extraordinary difference in survival for people who lived in the poverty area versus the non-poverty area.  In fact, over a nine-year period, those who lived in the poverty area had a 56 percent higher risk of death than those who lived in the non-poverty area.  Now we adjusted for--we did the conventional kind of analysis and adjusted for 20 or so usual candidates; it made no difference at all.  So: location, location, location.  

Now, we also know, increasingly, that the life course is becoming critical to our understanding of population health.  And as John Milton put it -- I'm sure you remember "Paradise Lost" -- well, line 220 to 221, "the childhood chose the man as the morning chose the day."  Well, a whole line of research now has indicated the importance of considering this cycle between birth, child health, and adult health, so that unhealthy adults are more likely to have unhealthy birth outcomes, children who have less advantageous birth outcomes are more likely to become ill as children; they're more likely to have poor adult health.  So, we can have either a virtuous cycle or a vicious cycle, depending on risk factors and the environment and how they affect these different processes.  

There are three kind of stylistics ways of looking at the life course, each of which there's substantial evidence for now.  One is a kind of latency effect, where things that happened, perhaps as early as in utero, result in physiological changes, functional changes, which then are only represented much later in life, perhaps 50, 60, 70 years, in terms of health problems.  We also have one thing leading to another, these chains of consequences of either good or bad things happening, which seem to affect health.  And we have an accumulation of events across the life course -- for example, accumulation of adversity.  There's evidence for all of these.  These are obviously very complicated phenomena. 

Now, some examples of each of these -- the latency effect is shown in the work of Barker and colleagues, where we see that increasing birth weight is associated -- this is now showing the risk of coronary heart disease in people some 50, 60 years after they were born, and with the lowest birth weight being a reference category of one, and you can see these are all below one.  So, as birth weight increases, the risk of coronary heart disease over the next 60 years decreases.  So these are thought by some people to be latency effects.  

But we also have these kinds of chained effects; this comes from work we did in Sweden, where we took some measures of childhood disadvantage, and a variety of measures of early jobs and later economic success, and we put them into an index.  and this is women in Sweden, a very equitable country with rates high on gender equity issues, and you can see that these chains -- this is just the chains of -- from one stage of life to the other.  These chains are strongly associated with the risk of coronary heart disease.  

And finally, we have this accumulation of risk, in this case accumulation over almost 30 years, where we asked how often people were below 200 percent of the poverty line, and you can see for disability, depression, pessimism, hostility, and cognitive problems, strong associations with cumulative disadvantage.  So, some examples of the life’s course effect.

Now we have the complex and argumentative area of income inequality and health.  And I'll show you this slide; we'll come back to all these things later.  Just pay attention to the blue dots in this one.  The blue dots represent metropolitan areas in the US; their size is proportional to the population.  On the bottom we have the share of household income in each of these metropolitan areas, which is received by the poorest 50 percent of the population.  So, it ranges from around 16 to 25 or 26 percent.  And on the y axis, we have working age mortality.  And as you can see, there is a strong linear association between income inequality and mortality.  As income inequality increases, mortality goes up.  These effects are large.  If we consider the joint effect of income inequality and low income, we see at comparing the extremes, a difference of 140 deaths per 100,000, and that's equivalent to the combined losses you see from a number of very, very serious diseases.  

Now, finally we come -- I think we have two more: social divides and health divides.  We all know, for example, that levels of income are strongly associated with mortality, and this shows results from a study that Michael Wolfson and myself and others did some years ago.  On the blue line -- on the pink line, we show the distribution of household income in the US.  On the blue line, we show the risk of death over roughly six to ten years, relative to those at the mean income level.  And you can see at low incomes --roughly the bottom quartile -- very, very strong relationships, so that small increases in income buy you large increases in health, with the effect of decreasing exponentially as income increases.  

So, we have divides according to income, we also have divides according to race, and they often come together.  Here we show--this is heart disease annual death rates 1979 to 89 in the U.S. You can see that on average there's a strong relationship between increasing income and lower risk.  And notice also that the ratio between blacks and whites decreases substantially, almost a parity, in the highest income group.  So, we see this complex mixture of various kinds of social divides in terms of generation of coronary heart disease.

Finally, this all has to get under the skin, and my last example has to do with coronary heart disease.  We know coronary heart disease is a complex phenomenon, but certainly part of it involves the gradual occlusion of the coronary arteries because of the development arteriosclerotic plaques and their consequences.  And in a study we did many years ago, we showed that education and income was associated with the thickness, not of coronary atherosclerosis, but of carotid atherosclerosis, the arteries that supply blood to the brain in a stepwise, monotonic fashion, asymptomatic.  So, lets go back to that for a minute.   Here we have asymptomatic disease related to the primary cause of death in the U.S. and most developed countries strongly related to the socioeconomic position of people.  

Now, as we look at all these examples we can see that all of them, to one extent or another, involve dynamic aspects, spatial aspects, multi level aspects, interactions between levels, and indeed are all complex.  And I want to build on this notion of each of these a little bit by taking each of these examples and following them up.  

So, lets look at life expectancy at birth in the Soviet Union.  Now, one of the things we have to consider is the political context and part of the political context in the Soviet Union was Gorbachev's anti-alcohol policy. And this slide shows you--and it was a very effective policy, this shows that during the period when the anti-alcohol campaign was in effect, in a country that had the vodka belt, binge drinking of vodka, you can see that there were strong declines in coronary heart disease, as well as, acute alcohol poisoning.  That campaign ended with the dissolution of the Soviet Union and you can see that had a substantial impact on changes in corner heart disease rates.  

But, there are other things going on also, there was social stress and this shows the relationship between--in Russia, each of these dots represents a different area of Russia, and you can see that it shows the fall in life expectancy on the x axis and a measure of economic instability on the y axis.  And you can see that the areas that had, during this period following the dissolution of the Soviet Union, the areas that the greatest social instability, represented by turnover in jobs, had the largest fall and life expectancy.  

So, this all get very complicated and indeed it should be.  Causes of health and death in populations are very complicated.  And here we see just one attempt modified from Wallberg of thinking about the historical of the necessity, of thinking about historical and contemporary economic stress, urban areas of high income and high crime rates, variations in the turnover of the labor force.  All of these feeding back and forward on each other in the leading to psychosocial stress which then feeds back, feeds forward into behavior, decreasing cohesion, increasing in equity, having impact on economic change, all of these things and to crime and ill health or death.  So, we seem to understand this massive change in life expectancy we have to really pull back, widen the lens, and think about a variety of levels looked at dynamically, looked at multi levels with lots of feedback and interaction.  

Another example is the obesity academic.  Now, obesity epidemic is conventionally thought of as a problem of energy balance, energy expenditure versus food intake with a few other things, including genetic factors and thermogenesis, and a variety of other things thrown in.  But, in order to understand energy expenditure and food intake you need to consider both a variety of factors and work and school and home shown on the slide.  Those are related to community factors ranging from public transport and safety, sanitation agriculture and local food culture and national policies have an impact on those as well.  And we all know now that food is a global issue.  So, in order to understand the obesity epidemic locally, as well as globally, we need really need to have some sort of framework which allows us to examine all of this simultaneously and overtime.  

Now, lets take location, location, location.  There are many kinds of places people can live.  Some of these you would prefer to live in more than others.  The do represent conventional realities for many people.  Now, one of the things we know is that neighborhoods change over time.  They're dynamic hubs of human activity, social change and politics.  What's more, people move in and out of neighborhoods and the conventional way of the about--do like that?  The conventional way about think about neighborhood effects is that a lot of them have to do with compositional factors of people moving in and out of areas.  But, in fact, people move in and out of areas responding to a mix of economic necessities and limitations, social pressures and preferences.  And the amenities, businesses, opportunities, and risks of neighborhood's change over time.  

Now, I'll give you an example, this is a bit ironical, this is these Chicago metropolitan area and the blue dots represent the locations of job subsidies.  So these were jobs that were created by public money, by the addition of public money.  The coloring, the other coloring, represents unemployment rates in 2000 and you can see that jobs are created where people least need them.  So, this has an impact on the nature of neighborhoods.  Now, I'm sure there were arguments for this, but, nevertheless it does create a certain amount of irony.  And it highlights the fact that there are external factors that move people in and out of areas according to their abilities to move and according to their skill levels and education levels.  And that when we think about location, location, location, we have to think about those factors, as well as, the decisions of the individuals.  

And all of these can together in creating what you might think of as a geography of opportunity. There's too much on this slide to read, but this shows the variation within the Chicago metropolitan area of opportunity structures and there is enormous variation.  What's more, we often find that areas of the greatest opportunity are adjacent to areas of the least opportunity.  What's more, people move to these areas over time and this is a wonderful slide from the geographer, Anthony Gatrell, he takes his family and they start out at home, and they move over space and time through a variety of social situations, environmental exposures, and they all come together at night to watch violent TV.  So, the point is you have to think about the movement of people to space and time, why the move, how they move, and what are the political and social and economic forces that are modulating all that as well?  

Now, what about the life course?  Well, those are the three models that we thought about.  If we think about how complex the life course is, in this case, in terms of adult--looking at it's impact on adult declines in lung function and onset of adults respiratory disease, you can see that it's a complex combination of poor childhood, of course with lots of determinants of poor childhood, actually, poor childhood is poor adulthood, right?  For example, child poverty is really adult poverty because children in wealthy countries don't work, it's their parents who work or not.  So, poor childhood and all the things that factor it, of course leads to poor education and poor adult social economic position, exposure to various environmental and occupational hazards.  

But, poor childhood also places one in the context of higher levels of air pollution, higher exposures to passive smoking and poor diet.  These things all creating very early life, and perhaps in utero, infant respiratory infections that lead to a child respiratory illness and all of this modulated by genetic exposure comes together in adulthood.  So, understanding adult lung function really needs to have a framework which takes into account the whole life course.  

We also have to remember that there are intergenerational aspects of the live course.  So, what this shows, for example, from a former student of mine, Debbie Barrington, is grandmothers of the current generation African-American women, I'd like to point out this is in Washington, so when we think if there are intergenerational influences on health, and there's lots of evidence that there is now, when we look of the health of one generation, we can't rule out the impact overtime of these intergenerational issues.  

Now, what about income equity and health?  I showed you this, this has been an extraordinary contentious area.  But, I'm still a believer.  I do want to point out one thing here which is extraordinary interesting.  Here we show five countries, the US, Australia, Sweden, UK, and Canada, and each country has its own little circles colored differently.  One thing you notice is that there's an only association between metropolitan area inequality, differences in income inequality, in the US and UK.  And in more egalitarian countries like Sweden, Australia, and Canada, there's no relationship at all.  

So, in thinking about this, we realized there are many people who want to attribute these results to a single factor.  But, really in order to understand the association between income inequality in health and the variations from place to place, we think you have to consider historical and political and cultural factors.  You need to consider a whole range of what we call neo-material factors; this is where the rubber hits the ground.  This is where more or less unequal areas invest or disinvest in things that are causes of health. As well as, a variety of psychosocial processes and, of course, the behavioral factors as well. These are all tied together.  They interact dynamically to various extents, in various places, at various times.  And so to understand something like this income inequality in mortality association, in addition to dealing with all the methodological issues, we have to have tools that allow us to get at the richness of these phenomena.  

Now, what about getting under the skin?  Again we have the coronary arteries. This was a very simple model at one point  years ago that we developed to show relationship between social economic position and myocardial infarction and angina going through a variety of behavioral risk factors, social factors, oxidation pathways, insulin resistance pathways, other mechanisms, all going through atherosclerosis and thrombosis.  Now what about that?  Well, I think there's some truth to it, but even that is just a static picture and doesn't take into account the dynamic and life course development of coronary artery disease, or corner heart disease which develops over many decades.  

And in order to understand that, you have to perhaps even start before birth and you have to look at the live scores and how that affects socioeconomic position and risk factors and the natural history of the disease, the preclinical, the triggers, the events, and the recovery.  And all of those things looked at overtime in populations and individuals are going to necessary to understand the true causal picture for coronary heart disease.  

Now, what about social and racial health divides?  We showed this, this is an extraordinarily important and complicated matter. And I'll simply indicate that we have a centralized race and socioeconomic position in many of our analyses, we have not looked at what lies underneath the water.  We have not looked at life course issues, socioeconomic issues, neighborhood issues, cultural issues, geography of opportunity that changes over the life course, environmental exposures, etc.  There has been no comprehensive examination of that.  My presumption is that if we were able to do that and we were able to capture this over the life course, we would see that the "problem" of racial and ethnic divides and health is both understandable and remedial.  

So, those as examples, they're intended to challenge you, to push you towards understandings which involve more complex approaches beyond the usual regression model as a model of the world.  And I think it's useful, again, to review that they all have dynamic, spatial, multilevel, interactive, both feed forward and feedback, and complex, perhaps emergent, properties.  

So, why we need complex system approaches to population health is I think that we can't approach that matrix of factors unless we have such approaches.  Now, in 1977 the designers Charles and Ray Eames, and you probably know them best for the chair that they designed, which is still in production, made a 17-minute movie called, "The Power of 10."  I don't know how many of you have seen it; you can look at it for free on the web.  As they zoom out from a couple lying in a park in Chicago, lying on a blanket in a Chicago park, and zoom further and further out to the far reaches of the galaxy and then further and further in to vibrating atoms, they provide a visual metaphor of the benefits of moving from the tunnel vision of our perceptions, and all too often our scientific practice, to a multi layer, a multi leveled approach.  

The examples I have presented today are intended to emphasize the critical nature of these multiple perspectives and designed to show how bridging the biological and social is not just a scientific fad, but an intellectual necessity if we are to understand critical issues that affect the health of populations.  What's more, beyond the necessity of multiple perspectives we now recognize the critical dynamic nature of most population health phenomenon.  Whether we're looking at a single level, biological or social, or across levels, mutual determination, feedback and feed forward within and between levels are the rule, not the exception.  

Like all bridges, it is a two-way path leads from one the side to the other, both sides the biological and social are origins of destinations.  The expand, these examples also emphasize the necessity of incorporating time and place, the dynamic and spatial fabric of population health into our understanding of population health.  And if the state of current complex systems knowledge is any guide, we can expect that bringing together multiple levels of health determinants interacting dynamically across time and place will bring many surprises.

Now, it could be argued, this is Einstein's brain by the way, it could be argue that this is all too complex and that simpler strategies have worked just fine, and there maybe circumstances where that is true.  That they just need to be fine tuned and adapted to new areas of scholarships.  But, I think the view of your meeting organizers is that there is a strong imperative to bring together the diverse fields of complexity science and population health, neither of which is terribly well defined, I might add.  We cannot say with certainty what will come from the scientific journey that engages both.  But, we can invoke Albert Einstein's dictum that everything should be as simple as it is, but not simpler. We look forward to spending the next few days with you engaging in this journey and hopefully many years thereafter.  Thank you.

[applause]

Ana Diez Roux:

Okay, thank you very much, George, for that excellent overview to get us moving this morning.  As you might have seen in the agenda, we're going to hear our three speakers, we'll have a break after our second speaker, then our third speaker and we'll have a full 45 minutes for discussion at the end, so please hold your questions.  

So, our next speaker is Dr. Carl Simon who will provide an overview from the complex systems perspective. Dr. Simon is professor of mathematics, economics and public policy at the University of Michigan. He has applied dynamic modeling to a broad range of problems spending many different disciplines, examples include the movements of an economy over time, the spread AIDS, the study of anti microbial resistance, and the evolution of biological and economic systems, among many other examples.  Dr. Simon is director of the Center of the Study of Complex Systems here at the University, one of the co-organizers of this symposium.  Dr. Simon?

Dr. Carl Simon:

Thank you, I guess it's customary to you thank the organizers, but what happens if you're one of them?  So, this workshop deals with two issues, social epidemiology and complex systems approaches to understanding social epidemiology and public health.  George gave a little bit of the epidemiology side and mentioned that neither side is actually perfectly well-defined and, I think, I'd agree with that.  My job is to give the complex systems side, maybe help define it a little bit, set a context, talk about the kinds of problems we have attacked, if I could do the bridge, we wouldn't need this meeting.  So, homework for everyone here is to do that bridge, but I will try to indicate some first steps.  

So, complex systems, I'll spend the first two hours defining what I think of a complex system--you said I have two hours, and then going on to talking about examples. Now I gave a version of this talk a couple of months ago here, there will be an overlap.  If you saw the first part, don't snore too hard.  So, complex systems, it’s first about systems thinking. We have to start there and I think we would all agree.  So, the key idea is that everything is a system.  By system meaning if you're going to studying something is connected to the phenomena and if you're interested in what happens to changes in the phenomena you should worry about both how are the things connect to it affected and how does it affect the things that are connected to it.  Okay, that's the [inaudible] of this meeting.  I hope all our thoughts that dealing with systems and if you don't in a find unintended consequences.  So, plenty of examples--everything's a system, right?  There are man-made systems, there are natural systems and in a sense this is a meeting about the combination of the two.  Our health system, we could argue, is a man-made system our immune system, our circulatory system, the body itself, are all natural systems.  

So, what happens if you don't think about systems?  I think the strongest example I can think of is the DDT tragedy that Rachel Carson brought attention to. DDT -- I know it may be back end thinking about possibly an effective tool against malaria in Africa, so I'll say "indiscriminate use" of DDT that came close to destroying the natural ecology of the United States.  Or, you like hunting?  Bring a few rabbits into Australia, no problem.  Well, problem.  More closer to health issues and some of my own concerns, if you do want to treat a patient-- you don't know what it is, virus, bacteria, they got the sniffles? Given them the strongest possible medicine, right?  Wrong.  Or, even as something as subtle as we learned from Professor [unintelligible] use a strong biologic antibacterial soap to clean your hands, well that sort of like a strong medicine, right?  You're working in the process of evolving drug resistance.

Or, in man-made systems another thrust of the complex systems group is looking at sustainable mobility.  So, if you want to be congestion, just build another lane, it's obvious, you don't have to think about.  Maybe you should.  Pretty soon you've closed the highways, spend a few million dollars, for good reasons, things are pretty much back to where they were before.  Or, I grew up in Mayor Dailey's, Chicago, if you want to fix up the city, tear in the slums, ship its dwellers to high-rises along of lake, that will fix things up won't it?  Or will?  Even simple thinking on the street, you want to make higher profits, rise prices. I won't even talk about this one.  

[laughter]

Maybe the paradigm of not thinking about systems and how they work, right?  So, how do you do the process?  Well, the first step, and George gave plenty example of this, begin to understand what are the key variables that you care about and what are the connections between them?  You might draw some causal diagrams like we just saw with a little more time, luck, skill, chutzpah, you might actually put some numbers, some functional forms, some graphs to talk about what those transitions could be.  So what you have is a model, first step think systems, secondly take that system and begin to build models so you can understand it.  

I think the crucial first step, and one that I think very strongly about is start with simple models, the kiss principle: keep it simple stupid.  Start with the bare elements, make simplifying assumptions.  I see I wrote down three examples, I actually took two out so, I forgot to change that.  So, the example that comes closest to mind in an area I've worked in most intensely in the last 20 some years is in more classical epidemiology.  Okay, the spread of infectious diseases and with some of the people in here, Jim and I have thought about this together quite a bit.  Josh Epstein has done some complex systems models of the spread of smallpox. I see Kristin's here, welcome. You'll hear her later about her work and how behavior in smoking relates to the spread of TB.  

So, one of the concerns and one of the reasons for this workshop is to branch out some of the things that we have learned, for example, from modeling infectious diseases and move it to population and health issues.  Like obesity, diabetes, that have not yet been modeled as carefully as we think they should be.  So, but I will use as an example, the classical disease model.  First of all, if you could start with not even doing a systems approach, the standard biostatistical model that just makes a table of people who got sick and factors that lead in, make a little check box in your matrix, do a quick correlations, and say, yes, smoking causes cancer, maybe.  So, that's not taking into affect all the things or understanding all the underlying relationships; it's very linear and may be not very systems oriented.  

The next step might be to begin to bring the dynamics into place.  So, I'm going to give you the first four weeks of my course on math modeling in epidemiology.  So the first step is figure out the variables.  I'm going to take a very simple case where population is divided into two or three stages.  Susceptibles, those who don't have the infection, but can get it. The infected, and sometimes there's a third stage, those who--the removed stage or the vaccinated, those who don't have it and, for a while at least, can't get it.  

So, there's the beginnings of the diagram and we start connecting the compartments.  Of course the thing we care about is a new infection, people moving from the left box to the middle box.  What factors bring in new infections?  Well, it's susceptibles getting together with infecteds that transmit disease.  Of course, the movement out in the diseases we're looking at, I'm thinking of something -- with what  ‑‑  so for example, many diseases like colds, flu, your ‑‑ once your immune system kicks in, it protects you for a while, okay?  And then eventual loss of immunity, background death.  Okay?

So this is sort of the standard, classical model that we want to build on, to go further.  And let me build on it.  So how would you -- might ‑‑ the next step, as I mentioned, may be to put in some numbers, to begin to get a feeling for how these things are related.  So in a simple case, these might be the parameters that you look at -- you know, what counts?  Part of building a model is to understand, what are the variables that matter the most?  So in the very simplest case, I’d say these are the bare minimum: contact rate.  Probably have in mind to keep the story simple -- a sexually transmitted disease where contact is a little easier to deal with than say influenza, but this can work in other cases. 

And then, not every contact transmits, so we'll need some probability of infection, given a contact.  And then people do recover.  In a simple case its won over the length of the disease.  And maybe some background death rates to close the model.  Okay?  So, at the bottom I have written the ultimate equation.  So, you know -- oh, I have this -- well, I don't have it.  So, how do we quantify number ‑‑ no, I'm fine, George, thanks ‑‑ number of new infections?  We have contacts by susceptibles -- this is all per unit of time -- so just multiply that by the number of susceptibles, and you get the total number of contacts by susceptibles.  But contacts only count for disease transmission if they’re with someone infected.  So in a random mixing, homogeneous population, the percent of meeting someone infected is just a fraction of infecteds in the population. 

And finally, the B‑term -- not every contact transmits; this is roughly the fraction that does.  So the first term is how many new infections there are.  The next term is recovery rate, and then background death.  Pretty simple?  It will be on the test.  There is a test tonight, right, George?  So I've written ‑‑ somehow deltas became thumbs down on this. 

[laughter]

There's a saboteur in the group.  You’ll be searched on the way out.  The -- so, the funny delta, this is a fraternity delta, right?  So, to actually -- this equation, though it may look complicated -- I didn't say complex, I said complicated -- can be solved fairly straightforward.  First of all, I'm assuming constant population.  

Actually, I think I jumped back and forth, I'm forgetting the ‘r’ part.  So, suppose we have some kind of gonorrhea, which we can maybe ignore in first analysis ‑‑ this is the keep it even simpler, stupid ‑‑ ‘s’ and ‘i’ only, okay?  So, if someone is either an ‘s’ or ‘y,’ then I could -- assuming a constant population, I could replace the ‘s’ by ‘n’ minus ‘y,’ I get an equation that -- only ‘y’ is in it.  And it’s not linear.  It's actually -- but it's almost linear; it’s quadratic.  So how do you study?  Well, notice that -- notice that the term in air brackets -- if that term is negative, then delta ‘y,’ delta ‘t,’ is negative, and the disease drops over time.  If that term in square brackets is positive, the disease will -- delta ‘y,’ delta ‘t’ will be positive, and the number of infecteds will grow over time. 

So, one way to get that term -- the term in square brackets -- negative is to get the term in curly brackets negative.  Right?  So when that term in curly brackets is negative, the term in square brackets is negative -- delta ‘y,’ delta ‘t’ is negative, meaning ‘y’ decreases with time.  Okay?  It’s the hardest part on the test.  So we have a criterion for when disease dies out.  And the analysis on the other side actually works, that when -- when that term is positive, at least if there are not many infected, the disease grows. 

So basically, I said you have a quadratic.  And the quadratic will depend on the term in curly brackets.  And here are the two possibilities:  On the left, whenever ‘y’ is positive, the change in ‘y’ is negative and the disease dies out.  And on the right there's an interval in which the disease grows.  Okay?  So you get one of these two pictures [cough]. Speaking of disease…  

And a criterion, a threshold; the tipping point that will give you some guidance -- so here is sort of a summary.  Okay?  If ‑‑ so that, that ratio, which I will write now: CB over A plus M.  Whether or not that’s bigger or less than one, we’ll tell you whether or not the disease will grow to an endemic level, or die out.  And that's the basic reproduction number, it’s -- in pure demography, it’s roughly how many daughters does a mother have in the course of her fertility.  Okay?  When that number is bigger than one, the population grows, and when that number is less than one, the population decays.  In epidemiology, it’s how many infecteds has an infector infected in the course of this infection of the population of uninfected.  Peter Piper?  Another way of seeing it -- that CB is the rate of new infection, and A plus M is the rate of leaving infection, either through death or recovery.  I learned all this from Jim Coopman, so it’s got to be right. 

So, notice this model.  So the model I presented is the keep‑it‑simple‑stupid‑model.  It’s the simplest around.  I teach economics, my graduate and undergraduate microeconomics, and we basically make the same kinds of choices.  And when I teach simple biology, simple ecology; all these simplest models have these six characteristics. Every one is the same, there’s no -- notice I had no risk factors, no age difference, no behavior difference; it's either you’re sick or not sick.  In ecology, all the fish are the same.  Okay?  Equilibrium -- so notice, in the long run we only really care whether you’re at zero or the endemic equilibrium. 

In economics, we only care about the fact that microeconomics that I teach, and the books I teach from are called General Equilibrium Theory, as if nothing else counted.  Random mixing -- that was so huge in the process I just described.  Okay?  These people meet randomly; there's no structure to the population, no contact structure.  What a crazy assumption for a disease spread, of any kind.  No feedback, no learning; there's no change.  There was a deterministic model, and there was no -- you know, it was all at one level, there’s -- it was a basically macro model.  So -- and this is it.  Every field I can think of: economics, ecology, biology, business, chemistry, physics; we begin with this kind of simple model, and they usually have these six characteristics. 

So, what's the next step?  Well, we get insights in these models, and they’re pretty powerful; they’re pretty strong ones.  The R zero that I just mentioned; the tipping point -- if you want to see -- if you want to beat the infection, it tells you, you want to get that ratio less than one, and you’ve got four parameters to play with. 

In ecology you get nice, predictable cycles between predators and prey.  And in economics you get, you know, consumer demand increasing with price.  You get the fundamental theorems that say markets work all the time.  They’re simple solutions.  They’re nice heuristics.  But can we trust these insights?  So, a natural question is, what are we missing?  If I can roughly quote the -- Georgia's Einstein quote, "Keep it simple, but not too simple."  So the natural question is, what happens when we relax these assumptions?  Well, remember the ‑‑ here they are again: homogeneity, equilibrium, random mixing, no feedback, determinism, and no connection between micro and macro.  So, if I think of sort of the other side of the coin for each of these -- I sort of think of this as the ingredients of a complex systems approach.  And there is no such thing as the complex systems approach, or you know, when is the threshold, the more you have -- sort of -- it’s a gestalt. 

So, heterogeneity -- people are different, and those differences make a difference.  In disease spread, it's about risk -- different risk factors, for example, different ages; all of that counts.  Secondly, there is a dynamic.  If we can only look at equilibrium, we'll have trouble -- we want to know where we’re at and what we can do to change the course of where we’re at, for example.  Contact structure matters.  Random mixing is an incredibly silly assumption.  It should be the first to go.  Feedback -- people change.  And the world’s -- I think one can argue -- I’ve actually been in this argument, usually on the other side.  People -- that the world is not deterministic, that the stochastic parts are important, but even then, those that do stochastic stuff worry about the mean or the average.  I think in health issues it’s the tail -- the variance -- the tail of the distribution that really plays a big role. 

And finally, you know, we should look at the fact that there are many levels, and see what emerges.  So I’m going to talk about each of these separately.  Heterogeneity: in economics we call this representative consumer, as if everyone's average.  In disease spread, it’s ignoring risk factors.  In ecology, seen one predator, you’ve seen them all.  And the complex systems approach is that people are different, and those differences count.  Maybe we’re really excited by our colleague Scott Page, who you'll hear later -- his new book, “The Difference,” which talks about the advantages of diversity and problem solving.  And you should all get a first edition, because they'll be most valuable.  It's a great book, and sort of is the key -- sort of summarizes the decision theory basis of diversity. 

Dynamics.  So, if there is a equilibrium, that's great.  It’s easiest to describe, because if you’re doing differential equations, it helps you ignore that ugly DY-DT term, and see where everything is heading, but in fact, I think you want to know, well, how do you get there?  It may be the path that's far more important than where it is heading.  Mixing.  So, in the disease model I described, the notion is that everyone in the population has an equal probability of contacting everyone else.  And HIV, that’s sometimes called the bathhouse model. 

Okay.  But in the real world, in studies of smallpox, in studies of flu, in studies of obesity, it's who we talk to that matters; who we’re in contact with.  Meetings are not random, and the -- and probably the key -- a key ingredient is the building of networks.  Instead of having the big box with ‑‑ so, here we also have an in-town favorite; Mark Newman has a new book.  A wonderful sort of survey of networks, and it's a great book because the two people closest in prestige to Mark are also coauthors.  So you have the three best network people in the world sort of describing what networks are. 

Here is a great example of -- or simple example, of a network and non-random mixing; this is, you know, who contacts whom in a high school; more likely, who dated whom. And there is quite a difference, you know.  Up over here, on the left, you got Josh Epstein with nine dates around him, right?  And there I am, way out on the right with just one. And, you know, so if we're talking about the spread of a disease, it needn't be a sexually transmitted one.  This is -- this is the picture that makes a difference. 

So -- in Mark’s work, and I hope he'll talk a little bit about it later in this workshop -- Mark sort of classifies networks into different kinds, and talks about how you can tell what characterizes the different networks, and in particular, what's the outcome -- you know, if you have for example -- in a world of studying some, some health issue, how does the outcome depend on the contact structure?  Jim Koopman and I have sort of -- it’s been the focus of our work together for 20 years, and you know, question -- for example, if you’re going to vaccinate, where is the optimal place to intervene?  In random mixing it doesn't make any difference, does it?  But if you begin to want to focus, to get real world, then you have to care about who mixes with whom. 

So for example, I showed you that very simple model of the SIR model and its diagram.  Here is -- if we really wanted to say -- to talk about HIV, then we'd have to bring in the different stages of HIV, including maybe full blown AIDS in disease stage at the end and the fact that they are different characteristics, so the simplest is, you know, a level of sexual activity -- or you could put age, and I have two there, but I’m -- you know, in the real world it should be 200.  Age group, risk class, sexual preferences, behavioral preferences. 

So -- and one of the things we dealt -- even within the class of compartmental models, you could begin to talk about different kinds of structure before you get to networks.  So, Jim and I have looked at things like proportional mixing and preferred mixing and structural mixing; cases where you can ‑‑ I mean, the other thing you want to do is if you want these model to have a difference in health and in intervening, you want to be able to relate them to data.  And with random mixing it doesn't make any sense.  You need a model that captures the mixing that's out there, in order to make an impact. 

In fact -- well, we’ll come back to that.  So, the fourth property of complexity is adaptation to feedback.  So, in economics that I teach, utility functions -- preferences never change.  There's no learning curve; there is no evolution; there is no education; there is no advertising.  Okay, it’s an absurdly simple world.  So to add this complexity, it's that people -- people get feedback on their actions, either from others or from themselves, and adapt.  So, during the HIV crisis in the '80s, in San Francisco, there was incredible behavioral change and decreases in levels of sexual activity as people understand the impact of the disease that they were just learning about.  But unless -- a model that doesn't take that into consideration is in trouble. 

Here are some of -- again, I'm a -- I have a part job as a book seller, so these are some of the Michigan classics; John Holland's books on adaptation and Bob Axelrod’s books on cooperation and evolution of cooperation, I think, are crucial ones.  They’re on our reading list, so they'll be on the test.  This is what I just added, actually -- those who were unfortunate enough to hear my talk a couple of months ago didn't see these, but I actually really think stochasticity plays a role in complexity. 

You know, some systems may be inherently deterministic, but very few.  And even if you do build the stochastic models, as I mentioned, one often just focuses on the mean -- let’s see how the mean works.  In fact, I've written a few papers on that myself; in the stochastic model, the mean works as well as the -- as the -- the mean of the stochastic model behaves just like the deterministic model; we don't have to worry about that stuff.  But in fact, that's only true with a lot of linearity.  And it's not the means that count.  In health it’s the distribution that you worry about; it's the tail. 

I just looked at the consumer reports health bulletin for this month, and the first cover article is really about -- is ‑‑ if doctors use averages in determining their suggested procedures, it's not a very good idea.  One needs to understand the tail of the distribution, because that's where it counts.   And finally, the sixth part -- a component, I would say, of what a complex systems approach involves -- has to do with emergents; multiple scales.  So, George, in his very first transparencies, and -- later on came back to the relationship between per capa income and life expectancy. 

I would think of that as sort of a macro scale.  What you’d like to do -- what George and I would like to do, is go look at behaviors that underlie that.  What about disease?  What about crime?  What about civil war?  What about employment?  There are many levels, and one of the -- sort of the ultimate goal of a complex systems approach is to work at the many levels.  You know, and that's not a common phenomenon.  At the University of Michigan in the last few years, the macrobiology and the microbiology departments divorced.  Skin in and skin out are now more or less in different buildings.  And in economics, the microeconomics and the macroeconomists could just as well have; they haven't talked to each other for 50 years. 

The complex systems approach is about making assumptions at the micro level, where behavior; where things that count and seeing what percolates up to the -- what emerges at the macro level.  And sometimes that emergence is self organization; sometimes it’s not.  And one of the key -- one of the key modeling tools that we use, especially here in our complex system center, is agent based modeling, where you make assumptions on individuals -- assumptions about who they act with; what they do when they do those interactions.  Let them run, and see what macro phenomena emerge, be it unemployment, be it health, be it diabetes, be it physical characteristics; obesity.  And there are plenty of people here who do this -- Mercedes Pascual, another member of the center, looks very much at how El Nino, locally, brings climate change, and how that affects the pathogens and disease spread.  Denise Kirschner looks at the cellular level, for example, of tuberculosis and what emerges in the population. 

So it's basically the bottom-up approach, that ‑‑ so, why the complex systems approach?  Why are we interested, and why might it play a role?  So, as I mentioned, there are two, ‑‑ I think there are two obvious reasons that a complex systems approach is worth taking.  One is sort of the ideas that I’ve just been on: we start with a simple model, you get the heuristics, you get the panaceas, and then you ask how universal are they; how robust are they, the changes in the model?  So, for example, that R zero that I described as the ultimate goal of standard epidemiology -- Mark Newman showed, and others have shown, that if the network gets a little complex, there is no R zero. 

The [unintelligible] that you get in predator/prey equations -- we love it, it's beautiful, it’s one of the most aesthetic things I know, and people related it to data like the lynx-hare -- the lynx and hare populations in Canada.  And it was one of the great triumphs of ecology until someone noticed that in fact, in order for the model to be true, the hare had to be eating the lynx.  Picky picky.  In the economics course I teach, the bottom line is the fundamental theorems of economics, which roughly say markets work perfectly.  Thank you Milton Friedman and Ronald Reagan.

But I think those assumptions ‑‑ if you looked more carefully at those models -- and I'm writing a book with some colleagues on this -- then you have to question and worry about the role of markets.  Sometimes they work and sometimes they don't, and it's about time we understood when they do and when they don't.  On the other hand, there is another reason for looking at complexity, and that is, some systems are inherently complex, and I think the systems that we're talking about in this workshop fall into that range.  You know, risk factors are crucial.  People have different behaviors, different ages, and we can't ignore that.  It's sort of the center of everything George talked about -- those differences; differences in drinking, differences in eating. 

The dynamics are important, as I think George made clear.  Things -- those graphs showed dramatic changes over time.  If you just went to the right-hand side and said, “This is all I care about,” you'll miss the important picture.  Mixing: that I won't even talk about.  It's so obvious, I think, that mixing is central.  People adapt and change, and how can we help that adaptation, or turn it --negate it, if need be.  And as I said, the tails matter, and the systems we're looking at are so naturally multilevel, so I think, in fact, the second reason for looking at social epidemiology from a complex systems approach is that it doesn't make sense to try any other approach.  All these things are so inherent in the problems we want to look at.   So, let me just say a little bit, maybe begin to tie some of the research we're doing outside of social epidemiology, that seems to me to have easy links. Okay.  

So one is -- so one thing that I’m -- with Betsy Foxman; I'm working rather strenuously on is, I'm trying to understand the onset of drug resistance.  When I went to the hospital for my prostate -- successful prostate operation a few years ago, you know, they said, “Get your ass out of there as soon as you can.”  Because, in fact -- and they did.  I was out in about 20 hours, with every possible pipe coming out of every possible opening in me.  And why?  Because the concerns about drug resistant bacteria in hospitals are far more than the concerns about the side effects of the surgery that I had, for a good reason. 

So, here is sort of a compartmental model of bacteria.  The C is colonized, D is disease, and the last D is isolated, and multiple strains -- healthcare workers on the bottom.  And understanding healthcare workers is probably the major impact, and their behavior having a lot to do with the spread of infection.  Jim Breck and I, and a number of others are working on a life history of Great Lake salmon.  How is that related?  Well, it turns out, in different streams coming into Lake Michigan, salmon stay in the stream different times, they stay in the lake different times before they go back and spawn for the first time -- this is how does age at first reproduction affect mortality?  And salmon have a pretty diverse behavior, and understanding that may be a step toward understanding some of the transparencies George showed. 

My wife Bobbi Low and I are actually interested in that.  It started more at the macro level, so the next thing would be to take the macro level picture and bring it down to the micro level.  So we have some macro level model of women's choices.  So, where we talk about age groups and human capital, so we've encoded women in our model with five characteristics: age, sort of support structure, education, socio economic structure and number of children, or whether or not they have a child, and then sort of trace the paths through to talk about -- to understanding, you know, what possibilities are there, and what effects they have. 


So, for example, here's a case of ‑‑ let’s see if I have ‑‑ looking at the blue dots, someone born in social capital two, so with some strong support at economic level three they make it to the second -- the 223 -- 22230 means they go to high school and then they drop out; they go to the bottom part and have a child, and then have sort of a constant SES class from there on.  So, one can build the transitions, they’re there in the data, and understand what are the consequences.  I mean, one question is, in the current industrial -- since the industrial revolution -- the demographic revolution, women are having fewer children and later.  What are the impacts of that, and when is it optimal?  Maybe even from a population stage.  And some idea that if you have fewer children, but put more energy into endowing them with education and income -- that may be the best strategy in today's world. 

Certainty what's happened in Thailand, where the -- where when the cost of education went up, and the necessity of having a good education went up, the number of births dramatically decreased.  So, then you can begin to look at distributions and ask questions; it’s the next step, and one we hope to carry out soon, maybe after we have learned a little bit more about agent‑based modeling in the tutorials -- is to look at the micro level and connect them.  I got this -- David Abrams, yesterday, showed us some -- the next step is to bring these to the kind of health issues we care about at this meeting.  So that's your homework and our homework.  Some of it’s been done, so here's a little diagram I got from David’s little discussion yesterday, sort of tracing out the compartmental model, the spread of diabetes. 

Maybe the next step is to begin to quantify some of those connections and understand how behavior impacts, and how -- get some ideas about progression, to begin to put in the full complex systems approach.  And there are a number of techniques that we care about, and quite a few people here at the university who work on complex systems.  One of the beauties of this approach -- and something I think George and I are especially excited by -- is that this way of thinking works so beautifully across fields.  I mention models in ecology, economics, business -- even physics, they have incredible similarities, and insights in one lead to insights in the others.  And so, you notice the groups, and -- you know, we -- all these people interact.  So these are some of the most active people and some of their affiliations.  And our students -- we're especially proud of our students, some of whom are here; Ross Hammond, I understand, has worked a little bit with Josh Epstein, for example, in looking at agent-based models of social policies and disease spread.

You'll hear Kristin Hassmiller Lich talk about the effect of behavior and smoking on the spread of TB.  You probably won't hear, but Katya Coli, one of our most recent graduates, heading off to Duke, worked with Mercedes Pascual -- sort of took a multiscale approach to the disease spread, looking both from the genomic to the  population level.  Even though she's only off to press, out of the nest for a year, she's already got a publication in Science Nature and PNAS.  So the complex systems approach is a powerful one.  It's our job to harness it, and to see what insights it gives in the kind of social health problems that George mentioned.  So, why are you sitting here?  Let’s get to work.  Thank you.  

[applause]

[Female Speaker]

Thank you Carl.  I think we’ve had two excellent overviews to get us thinking about the intersection between these two fields.  We're going to take a short break for 15 minutes, and we'll start promptly at 10:30 with our third overview talk, and then we'll have a discussion period. 

[intermission]

[Female Speaker]

Okay.  I think we're going to get started.  Okay.  Good morning.  We're going to get started.  Before I introduce our next speaker, I just want to make a couple of announcements -- remind you that there is a table outside with some publications on related materials, if you haven’t you haven't seen it, that you might be interested in.  I also want to remind you all that the symposium will be podcast, and if you go to our ‑‑ will be available for viewing.  If you go to our Web site, the Web site for the meeting, you will find information there on linking to it, and to be used later or recommending it to colleagues or any other important use of it.  So, our next speaker this morning is Joshua Epstein.  Doctor Epstein trained in political science at MIT and is senior fellow in economic studies and Director of the Center on Social and Economic Dynamics at the Brookings institution. 

His primary research interest is in the modeling of complex social, economic and biological systems, using agent‑base computational models and nonlinear dynamic systems.  And he has published widely in the modeling area on a variety of subjects ranging from the dynamics of civil violence to the epidemiology of smallpox.  He has authored or coauthored several highly influential books.  His latest book, “Generative Social Science Studies and Agent‑based Computational Modeling,” was recently published by the Princeton University Press.  Josh? 

Dr. Joshua Epstein:

Thank you very much.  Pleasure to be here.  I commend the organizers on this terrific conference, and it's a pleasure to see many familiar faces.  I'm going to talk this morning about why modeling -- a very general question.  And I would like to divide the talk into a couple of sections; one about modeling in general, and then show you two applications to flu.  I couldn't come out here and not show actual models to all my modeling buddies.  But first I want to talk about modeling in general.  And since I know the audience is not all from the complex systems world, I want to start with a somewhat mischievous -- see if I can make a somewhat mischievous argument. 

Everyone in the room is a modeler.  I know you don't think of yourselves as modelers, but you're all modelers, every single one.  In fact, anybody who ventures a projection or imagines how things would unfold is running some model or other.  I mean, right, when you say, “Invasion of a country will cause a wave of democratic revolutions through the Middle East;” that's a model of some sort.  But it's an implicit model -- but all these models that we have, they’re implicit models.  And in an implicit model the assumptions are hidden.  The internal consistency of those assumptions is really untested.  The consequences of the assumptions can't really be played out with any rigor, and the relation of the implicit model to data is really unknown. 

So, while we all have models, the implicit models have these defects, I think.  And that's why many of us build explicit models.  In an explicit model, you can study how your assumptions do play out.  You can let others replicate your results.  You can calibrate the model to historical cases where there is data, and you can incorporate the best domain expertise in a rigorous way.  
And we have had a lot of success working in teams with modelers, technical people and medical experts, archeologist, historians; all sorts of interdisciplinary operations that I think have been very successful, and that I think a meeting like this certainly suggests. 

With current computing, yes, the models can, if need be, be spatially very realistic.  You can execute a large range of possible scenarios and explore a vast array of containment strategies in public health areas.  And you can do what we modelers call sensitivity analysis to identify the most salient uncertainties; not all uncertainties are created equal, and computer models and modeling in general can help you identify those uncertainties that are really worth working on and reducing. 

There are a lot of myths about models.  I think many people feel threatened by models, because they imagine that when you give a model, you are  proposing to replace judgments with some sort of computer device.  And that's not the case at all.  Certainly, in the area of public health policy, models do not replace judgments.  They can certainty make our judgments better informed.  They can incorporate the best expertise and data in a rigorous way.  But they don't replace judgment, and they don't eliminate uncertainty.  They can help us bound the uncertainties.  They can help us identify which uncertainties are actually the most important, and they can suggest what data need to be collected.  But there will be a role for judgment, and there will be uncertainty in areas certainly as complex as those we are discussing here today. 

There are lots of goals of models, and lots of types of models.  Carl has talked about differential equations and stochastic equations and agent‑based models, but I'd like to focus on the many possible goals for modeling.  Again, I think most people -- when you say you build models, I think they assume, “Okay, well, he's trying to predict something.”  And yeah, prediction is a possibility, and it’s one goal of modeling.  But there are many others.  So I thought I would talk about some of them; one is to explain, which is quite distinct from predict -- I'll come back to this and focus on it in a minute.  Another is to reconstruct historical cases.  We've done this for the 1918 flu, the 1968 flu, the smallpox epidemics of the '50s and a variety of other areas -- again, illuminate core uncertainties; suggest what data should be collected.

I think the most important -- and I'll come back to this -- is that modeling promotes humility and a scientific habit of mind.  That is very rare -- dangerously rare.  I'll come back to that.  Again, we don't -- sometimes we don't think we can predict things, but we can bound the outcomes to plausible ranges, and that can be very useful, to say, “I don't know what will happen, but I don't think it will be worse than this,” or, “I don't know how bad it will be, but I don't think it will be at least this bad.”  So, bounding is one thing you can do with models.  In the work we're doing for NIH on pandemic flu, we've developed some systems that permit the evaluation of options in real-time; crisis options in real-time.  There's a lot computer models can offer in this situation. 

Demonstrate tradeoffs and help set budget priorities, discover new questions; I mean, one of the most important things you do as scientist, I think, is ask new questions, and models can help you do that.  They can discover new questions and help you explore them.  Challenge prevailing theory -- as Carl was talking -- certainly economics deserves a lot of challenging.  You can use models to expose prevailing wisdom as logically and consistent or incompatible with available data.  They can be used as training tools even when they don't purport to be calibrated to data or predictive in any particular way.  Educate the general public, show the apparently simple to be complex, and vise versa. 

So there are lots of things you can do with models.  It’s wrong to imagine that every modeler is predicting something; that the predictions are going to replace judgments; all these things are really myths that need to be exposed and rebutted.  Let me talk a little bit about a few of these in more detail, and then show you some actual modeling that I've been doing.  The first of them: explain and predict.  Explanation really does not imply prediction.  I mean, I think we'd all agree that plate tectonics explains earthquakes, but it doesn't let us predict the next earthquake.  Electrostatics explains lightening, but we can't predict where, and in some threatened, heretical minorities in the United States, we still believe evolution explains speciation, but we can't predict even next year’s flu strain.  So -- but I think we want to stick to this distinction and agree that in some cases modeling really isn't about prediction, it’s about explanation and other things. 

Guide data collection is another thing you can do with models.  Again, Carl mentioned this.  There's a naive view of science that is especially prevalent, I think, in the social sciences, and that is that the enterprises collect a lot of data, run a lot of regressions on it; this can be a very protective activity, to be sure, but it isn't the rule in science, and in many cases the theory proceeds the data.  Maxwell's electromagnetic theory predicted the existence of radio waves, which people then went out and hunted for and found.  Einstein relativity theory predicts that light should bend in a gravitation field, and then people go out and try to observe that.  They’re not -- scientific theories are not summary appraisals of collected data, always. 

And one role of modeling is to produce theoretical work that can guide the collection of data.  Historical reconstruction -- this lends credibility to our recommendations.  So in the case of smallpox, for example, we did a lot of work to reconstruct the known distributions of smallpox cases; the size distribution of epidemics, distributions of transmissions by social unit -- you know, what percent occurred in schools, hospitals, workplaces, homes?  We've published a lot of this, and we've done the same for 1968 global flu that I'll show you briefly -- shortly.

So, historical reconstruction is another objective you can seek to satisfy with models.  Again, I think the most important of all of them is that modeling enforces a scientific habit of mind.  And I would call this habit of mind something like militant ignorance.  It involves a real commitment to the ‑‑ you don't ultimately know.  I don't know.  All scientific knowledge is uncertain, contingent, subject to revision, falsifiable in principle; and for this reason you don't base your beliefs on authority, but on evidence, and this levels the playing field if you believe this, right, because the grubbiest little peasant can construct an argument that can compete with the view of the Pope or anybody else.  So it levels the playing field, and it’s why science as a mode of inquiry is antithetical to monarchy and theocracy and authoritarianism.

Feinman has a wonderful chapter in which he talks about the hard-won freedom to doubt, and talks about the long and brutal struggle involved in the acquisition of that freedom.  And it’s essential to a functioning democracy, and I think everyone has freedom to doubt.  Intellectuals like us have more than a freedom to doubt; we have a solemn duty to doubt, and to teach doubt, and in my view, education is really not about giving people a saleable skill set, but it’s about freedom; freedom from inherited prejudice and arguments from authority and the scientific mode of inquiry and modeling are all part of this.  So I'd think of the whole movement as from ignorant militants -- very prevalent these days -- to militant ignorance.  I think that's intellectual progress.

Now this has become a maudlin sermon, so I'm now going to turn to actual applications.  These are all about flu today, because this is what I've been working on mostly.  But I do want to go over some ground that Carl talked about.  If you think of an epidemic model as a cake or something, the simple ingredients -- the flour and water of epidemic models are really these: you’ve got to posit some kind of contact process.  And you’ve got to posit some kind of bug, which to a modeler is really a little collection of numbers.  One number is the transmission rate per contact, and another is some kind of recovery rate or death rate.  And people move around in these models, bump into one another.  Infected people transmit the bug to susceptible people.  Some of them recover, some don't, and around it goes.

In the simplest case that Carl talked about, a classical, perfect mixing contact process, you could think of the susceptible group as the big ‘S’, and the infective group as big ‘I’, and in these very simple models, susceptibles become infected at a rate proportional to S times I; the number of susceptibles times the number of infectives.  And what -- why?  What does that mean?   That means if you took all the susceptibles and lined them up in a row, and took all the infectives and lined them up in a row, and then had every single infective march down the line of susceptibles and sneeze in each susceptible’s face, that would be SI contact; S times I contacts.  And these models posit that you get that kind of contact rate every interval of time.  Okay?  If you add death, you get the classical model.  Now, these terms on the left are just the growth rates; the rate of change of susceptibles with respect to time; that’s what DSDT means. 

And we're saying that we -- on the right we have this S times I contact business.  This doesn't work.  So we have this S times I contact, as I just said, and for each of those there’s transmission with probability beta.  So the susceptible pool is falling as people get the bug and transfer into the infected pool at this same beta SI rate, and then infectives die with some probability gamma per period.  And we can think of this as the death term.  Okay?  So it’s very simple; susceptibles fall, infectives grow, because people are transferring from susceptible to infective.  Then as people are removed, they transfer from the infective class to this removed class.  And the model is very unrealistic in positing perfect mixing, but it's also very, very revealing and we’re going to use it throughout.  The main insights from this simple model are that epidemics are a threshold phenomenon.  That is, there is some level of susceptibility below which the thing fizzles and above which it takes off and becomes an epidemic.  And what is that threshold?  Well, we had this growth rate in the infectives is this term.  That is to say the infective pool is growing. 

This term is greater than zero, and with a little algebra, that comes out to mean, well, that this is greater than zero.  And then dividing out by data I, we have this special phenomenon that things are epidemic if the susceptibles exceed gamma over beta.  So we’re going to -- thank you.  We should remember that.  That will also be on the quiz.  It’ll actually come back as a very important thing on the 1918 flu.  So let’s remember this point.  It’s the susceptibles, okay? 

And another result of this simple model is that you can prevent epidemics without vaccinating the entire population.  You vaccinate only until the susceptible pool is below the threshold and then the thing dies out.  And another interesting feature of this model is that pathogens that are too deadly don't do very well.  They kill their hosts before they can spread.  But the main thing I want you to keep in mind is that epidemics are threshold phenomenon and it’s the susceptibles that really matter in producing an explosion or not.  Okay? 

So, as Carl was saying, one of the ways we do this work is not in differential equations but in agent‑based models.  And one of the things you do is make sure that in the simplest case, you can dock your model, as it were, make it agree with the classic mathematical model.  So here’s a little toy agent model that we’re going to build bigger things out of as we go. 

So you can imagine a little green playground and susceptible kids are blue and infective kids are red, and they’re just going to buzz around and bump into each other, and sick kids are going to give blue kids the bug, then they’re going to turn red, and red kids are going to die at some rate.  All right?  And again, this is going to be one of the little Lincoln logs of enormous models I’ll show you in a minute.  But here's how it goes. 

They’re buzzing around and kids are giving each other the bug.  Infected kids are dying.  And pretty soon, it’s -- you know, it’s very hard drama as to what happens here.  I know, it’s painful.  I know, it’s really sad.  Does he make it?  No, well… [laughter]  All right, he tried valiant -- valiant effort, but no luck.  And you get exactly the same curves from this thing as the -- as the classical equations.  Susceptibles fall, infectives rise, everybody is removed.  I know it’s sad; you'll get over it.  [laughter]

And this is all just dandy where a high level of mixing can be assumed.  So here is actual flu data from a 1978 epidemic in a British boarding school.  It's winter, the kids are all eating in the same dining commons, the windows are closed, they’re -- you know, it’s pretty good mixing, and the theoretical model does very nicely.  Sorry?  They didn't die.  I’m sorry.  Right, of course.  Exactly.  It’s just the infection curve I showed.  You’re quite right.  But there’s a lot that’s missing from this. 

And now let’s careful add it; having conformed to our first commandment of Keep It Simple, Stupid, let’s make it a little less simple; probably equally stupid, but less simple.  So one of the things that’s missing from these simple models is behavior.  I mean, this epidemic is raging through their community and they continue mixing as if nothing were going on.  This is actually an amazingly ubiquitous feature of almost all mathematical epidemiology until very recently. 

So let’s introduce that.  Fear, endogenous self-isolation, flight, distrust, noncompliance, these are all things that matter hugely.  I mean, I think, you know, this issue of vaccine refusal is a giant deal.  Everybody assumes that if you have a pandemic flu vaccine and make it available to the public, everyone will dutifully take it.  But I think that’s not at all clear and we can come back to this. 

But one thing missing from the model is behavior.  Another is policy.  There is no school closures or quarantines or anything else that happens in the course of this toy epidemic, and another is space.  It’s location, location, George.  And all of that probably is okay for a local inter-pandemic; that is, non-annual flu but it’s probably not at all good for a global pandemic flu.

So let’s jazz this model up a bit.  Henry Poincare, one of my favorite people, in a little known essay on French geodesy said of the plague, “The plague was nothing.  Fear of the plague was much more formidable.”  Formidable -- quite formidable.  Right.  Okay.  So let’s add fear, and again, you know, the question is also what's the simplest conceivable way to do this in a model?  And this is some work I’ve been doing on a couple of contagion dynamics of fear and disease with colleagues at Brookings and Johns Hopkins, and presented recently at NIH, actually.  

So the idea is let’s introduce a second contagion process.  So we have one contagion of disease and one of fear about the disease.  So individuals contract disease only through contact with the disease infected, the sick.  Individuals contract fear through contact with the disease infected, the fear infected, or those infected with both fear and disease, the sick and scared.  Scared individuals, whether sick or not, withdraw from circulation with some probability.  They go to their basement, which of course affects the course of the disease epidemic proper, and they can return from circulation of their own volition or in response to governance. 

It’s a very simple idea.  Let’s just add another contagion of fear.  And again, not to get heavily into the mathematics of it, but the idea is we had this disease transmission parameter beta per contact, probability of transmitting the actual disease.  So let’s just introduce another alpha, probability of contracting the fear.  So we suppose a susceptible -- somebody who is susceptible to both bug and fear, S sub BF, is walking along and they have contact with someone who is infected with both bug and fear.  Then the probability that this person's susceptible to both contracts the infection and gets scared is alpha times beta.  That she contracts the infection but doesn't get scared is one minus alpha times beta.  Neither, one minus alpha one minus beta, very straightforward.  And if we posit the same contact dynamics, I'll show you two formulations because differential equations you'll see are going to become very cumbersome. 

But here's the appropriate generalization of the simple differential equations I showed you before for this two-epidemic case.  It turns out it’s seven dimensions.  It’s, you know, solvable, but it's very impenetrable and unwieldy.  And so what we're going to do is build a little toy agent model to look at it, just like our little playground, only it 's going to be fancier than the playground because there's going to be two epidemics, not just one.  All right.  

So let’s warm up with a couple runs that are uncoupled: pure fear, no bug, pure bug, no fear.  So here's one.  Again, I'm not going to bore you with 8,000 agents on a Taurus.  Blue is healthy, red is sick.  So again, this is just the playground model again.  And I'm not going to go through it, but you can see the thing is spreading with toy -- completely toy parameters.  Okay.  So there is more red, simple.  And here's the curve.  Susceptibles decline because everybody is becoming infected rather then susceptible.  Pure fear, this is the Salem witchcraft model.  No actual bug, just fear.  [laughter]  And now yellow, the light colored agents are afraid.  Okay.  

I hope you're thinking because now the quiz is coming up.  Okay, so here's pure bug, pure fear, no bug, Salem witches.  And now, here's the question, all right?  Everything looked completely symmetrical, right?  I mean, it was just alpha, beta.  Alpha behaves just like beta.  This is two contagion processes.  Now suppose we turn both fear and bug on and set alpha equal to beta.  You'd think the two S curves would coincide.  Right here is the fear epidemic.  Here's the bug epidemic.  You'd think they’d just be the same, everything being symmetrical, same numbers, same everything.  So are they the same?  You get the same epidemic curves?  Any thoughts?  

Well, I was surprised to find that you actually don't; that the fear epidemic spreads much faster then the bug epidemic even with everything exactly equal. Why would that be?  Because you can -- there are more channels by which to spread fear.  You can contract the bug only from someone infected with bug or infected with both bug and fear.  You can get the fear from someone who has the bug, who has both the bug and the fear and has the fear alone.  So there are more pathways to spread the fear.  I didn't think of that.  But here’s a very simple model that produces a counterintuitive result that suggests network effects, all sorts of issues where I certainly didn't expect them.  So there's more pathways to spread.  That's interesting to me. 

And it bears on 1918, so now two applications to actual flu.  Everybody, I think, knows something about the 1918 pandemic.  I mean, roughly 50 million deaths worldwide, 650,000 or so in the US, and one of the very characteristic features of the 1918 flu and one that we don't understand very well is that in almost every case, there were multiple waves of infection.  Here are data from US cities.  So there was a first wave and then a second wave.  Sometimes, as in Newark and Philadelphia, the second wave was as bad as the first.  And if you look across American cities, there’s -- the two waves are typical.  The size isn't always comparable.  Here they’re same size, second wave even bigger.  Noticeable second wave.  Comparable, littler, but there's always a second wave.  

Can we arrange that in our model with this simple toy infection, toy fear idea?  Pretty easily, actually.  We imagine that scared agents, whether sick or not, withdraw from circulation with some probability and stay in the basement until the government issues an all clear.  And then they come out, or you can imagine them endogenously coming out. 

But it was the premature lifting of the quarantine produces these multiple waves very easily.  Why is that?  I gave you the answer.  It's the susceptibles, right?  I mean, here’s again what happens.  The infection starts so people are going from susceptible to bug and fear, into their basement.  Then the level of infection gets very, very low.  And the government thinks, “Well, you know what, there’s barely anybody sick anymore.  Let’s go ahead and lift the quarantine.”  Everybody comes out of their basement.  But now there's lots of fuel for the epidemic again.  And you get this second wave.  

And again, it would be easily foreseen with our simple toy model, right?  I mean, if you say that authorities surmised that the low level of infection made it safe to relax distancing, but they didn't have our simple toy theory that it's the susceptibles, right?  They didn't understand that it's the susceptibles that are the threshold and that they looked out and said the infection was falling, distancing had reduced the pool.  I mean, what happened was that distancing reduced the pool to below threshold and it did start to fall.  And they thought, “Well, because the disease, the incidence is low, it’s safe to let people out.”  But the release of the susceptibles poured them onto -- they poured fuel on these infective embers and pushed the S over the threshold and you get the second wave.  Very simple explanation.

And if you look at the newspaper accounts, I mean, again, this is anecdotal, but you know Chicago Tribune, we're practically out of the woods.  Meaning very few infectives, but lo and behold, since it’s the susceptibles, they relaxed distancing, susceptibles poured out of their basements and it’s like pouring gas on a match, right?  There's a little infection and then it blows up and you get the second wave.

So, topic of the talk was Y model.  Well, upwards of a quarter of all the deaths in 1918 occurred in the second wave.  So if people had been armed with our simple Kermack-McKendrick model, governments might have anticipated the effect of a premature all clear.  And worldwide millions of people might have been saved, hundreds of thousands here, in any case.  So a good/bad model, right, can be very, very useful.  That's one reason you model. 

Now, I want to talk about pandemic flu and then I'll wrap up.  Everybody’s heard about the H5N1 avian flu.  So far, you can only get this from a bird, we think -- well, that's not quite true, but the transmission chains among humans are very, very short.  So for purposes of this talk, think of it as you can only get it from a bird.  It has killed about a 185 people of the 306 known cases, so we say that the case fatality rate is about 60 percent, but you know, in -- if you're thinking about -- we don't have great surveillance systems in Asia, so we don't actually know that it’s not more than 306 cases, but you know, it's a very deadly bug to be sure.  

And we're worried about the evolution of a human to human variant.  By the Kermack-McKendrick equations, result three that excessively deadly pathogens kill their host before they can spread.  We don't really expect the human-to-human variant to be as deadly as the bird to human variant.  1918 flu was about 2 percent, but you know, that's still very, very awful pandemic.  And we need containment strategies for this possibility.

So we’re building large-scale models.  I direct the NIH global pandemic flu model with a team of people from Research Triangle Institute in Brookings, and we just published a paper in PLOS, Public Library of Science One, on this model, but it is truly a planetary scale global pandemic model. 

And the plan of attack in this work was to first, you know, see if we could replicate the 1968 flu with the 1968 global transportation system.  Then using just the '68 bug, ask what would happen if holding the bug constant, we update the transportation system to the 2000 transportation system?  And then update the bug to the best of our ability, with using those projections of what a pandemic flu could look like -- I mean, the bug could look like, that had been published in Nature and Science and by other people in this NIH project.  

So that's the plan of attack.  When we all -- where we’ll end up is with a global model linking the 155 largest cities of the planet by air, and we’ll be able to track the geographic spread around the planet given any release point and so forth as things progress.  We can query the model to ask what's going on inside each city.  Again, these are like these little patches but vastly more elaborate, again.  And we can get global time series of waves of infection across the global. 

The '68 flu spread from Hong Kong in '68; between one and four million deaths worldwide, probably not as many as might have occurred because there were some residual immunity from the '57 pandemic.  But for the moment, I just want you to focus on this replicates the spread in the air system that existed in '68, which is quite primitive by current standards, actually.  So you'll see, just again, just to get things going.  

This is how it did unfold.  And if you look at the day, it’s pretty slow.  I mean, if you think that SARS, in fact, was on five continents in 24 hours.  Things spread just a lot faster under current conditions.  But Irulan Genie [spelled phonetically] and a colleague, Ari Achev [spelled phonetically], published a paper in mathematical biosciences that elaborated the transmission dynamics, and we replicated that in our global model, just like we replicated the Kermack-McKendrick model in our toy -- in our agent model.  

All right, so now were going to show what happens under current conditions, and again, this is all in the PLOS paper but it involves the entire air transportation system around the planet.  And obviously, as you’ll see, starts in Hong Kong again, spreads very quickly.  We can again query the system for what's happening in any city.  And we can plot the evolution of these waves as things progress.  And you can ask what's -- you know, what’s this city?  Cairo.  What’s some other city?  San Jose, and so forth.  The point is it radiates out of Hong Kong very fast.  I'll show it again so that you can see the comparison to London, which is very interesting.  The interesting thing to notice is the wave; it's spread out quite a lot, you'll see.

Okay, now if you start it in London, you get a very different type of evolution.  Because London is a much more central hub in the global transportation system than Hong Kong.  And so the waves are much more densely clustered than they are when you start in Hong Kong.

And worldwide, again, the model just treats metropolitan cases.  I think you’re going to have a whole -- you’re going to hear a lot more about this number arnaut [spelled phonetically] that Carl talked about, the reproductive number of the disease.  Again, it's the number of secondary cases you get in a completely susceptible population if you drop one infective into that population.  And there are various assumptions one can make about this.  A very crude measure that I hope we’ll get some good critique of.  But for various values of this number that are deemed to be plausible by NIH and CDC and have been published in Nature and Science, you know, it’s 400 million metropolitan cases for a midline value of arnaut.  So a big epidemic.  

And you get roughly that type of number, really regardless, you start in Hong Kong in January, Hong Kong in July, London in January, London in July, Sydney January, Sydney July, you're in this ball game.  And so obviously, a question is what are some -- you know, since we have this model of international transmission, let’s look at containment strategies, one of which is clearly to restrict travel, and the motivation in doing that would be to delay global propagation, buy time for vaccine development, distribution, and other non-pharmaceutical interventions like school closures, isolation, so forth.  But imposing travel restrictions shouldn't make the epidemic worse, right?  I mean, it should just delay things.  Doesn’t that sound right?  It sounded right to us.  But no, it turns out it was making it worse, putting travel restrictions on was making it worse, more cases in the US.

So if you look at this chart, yeah, if it starts in July the green curve, no invention, and then the yellow curve with interventions, 95 percent travel restrictions.  It just delays the curve.  It just shifts it to the right.  This is for the US.  But if it starts in January, with no travel restrictions, you get the red curve, and then we put the restrictions on and lo and behold, you’ve got more cases.  So what in the heck is going on there?  How could that be?  At first, we first thought, “Well, it’s a bug.”  So we spent a couple of months monkeying around figuring that that wasn't true.  

But why would that be happening?  Why would travel restrictions increase cases?  Well, we first went back to the Old Testament and thought, “Well, how would Kermack-McKendrick explain that?”  We say, “Well, suppose it breaks out in the United States and there’s no flights out.  That means that everybody is bottled up in the United States, better mixing.  Maybe that's why it is happening.  Nah, too few people fly internationally.  It just doesn't work.  Doesn't hold.”  So why?  And we puzzled and puzzled, and worried and worried, and my friend Yorgi Babachev [spelled phonetically], Russian at RTI said, “You know what it is?  It's seasons.”  Flu is a seasonal bug. We almost get no flu in the summer in the US; it's almost all winter.  

And suppose the Hong Kong outbreak starts in US low season, and you impose restrictions.  Well, restrictions do delay the introduction into the United States, and it can delay it until the peak takes place in the US high season.  So it's worse.  But you’ve got to have a global model with planetary dynamics to catch that kind of effect.  Right?  You would never get that in a toy model.  And it's quite a useful thing to know before you impose travel restrictions, because depending on the country and the time of the outbreak, they can delay it and they could make it worse.  But that's to us a very counterintuitive result that we would not have stumbled on without this kind of modeling. 

All right.  Bottom line, and I will wrap up, is that certainly in studying dynamics at this scale and level of complexity, there is just no alternative to models.  Under the uncertainties we face, there’s also no alternative to judgment.  And I think models are kind of like democracies, they’re the worst of all systems, except for all the others.  We're just -- this is how you have to do business. There is nothing that competes with it.  And in conclusion, I would quote the great statistician George Box that all models are wrong, but some are useful.  And that is all I would aspire to in this area.  So thank you very much.

[applause]

Female Speaker:

Thank you very much for another great presentation.  I'd like to invite our three speakers this morning to step up and sit at the table, and I'd also like to introduce to you Mike Spittel.  There he is.  Mike is a sociologist and is currently with the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development, and he is going to be moderating the discussion session. 

[low audio]

Mike Spittel:

As introduction, I'm a program officer at NICHD in the Demographic and Behavioral Sciences Branch.  My role here is to help facilitate the discussion, so let the conversation begin.  There's mics back there, so if you’re ready to have a question, raise your hand or line up there.  Don’t be shy.

[low audio] 

Male Speaker:

The question is how do you determine whether an explanation is correct or not?  Well, I don't think we ever can determine if an explanation is the only explanation.  My own criterion in social science and the work I do is that if you have, for example, some macroscopic regularity, like the distribution of firm sizes in the US economy to choose a Rob Axtell example, or an epidemic dynamic, you have some macroscopic regularities, segregation pattern, and you're trying to explain that.  What does it mean to explain it?  It means to furnish a micro specification, a set of agent rules at the individual level with all the relevant heterogeneity and so forth, a micro specification that suffices to generate that regularity.  

Now, if your micro specification does not generate the regularity, it is not a candidate explanation.  There may be more then one candidate, in which case you have more work to do.  You have to adjudicate between the competitors by further research of some sort or other.  It might involve determining whether the micro roles in model one are more plausible than those in model two.  But I don't think there is any final and ultimate way to determine the sole single explanation.  But I mean, I think the main thing is to agree on a criterion of candidacy, and for me it’s generative sufficiency of micro rules.  And I think that my own experiences is that it would be an embarrassment of riches to have a huge population of those, but you know, there might be, in which case there would be more work to do. 

Diane Finegood:

Diane Finegood, Canadian Institutes of Health Research.  I guess I want to ask the provocative question, is there ever a situation where the situation is so complex there is actually no real value in trying to create sort of a simplified model?  And what I have as a conceptual model in my head is that picture that George showed of the obese -- the factors that are relevant to determining obesity.  The one's that -- you know, proximal all the way to distal globalization of media.  I've been thinking about that picture for a long time.  And that's even a simplification, really, of the situation, because as you start to unpack each of those boxes, you begin to find out that the interrelationships are also incredibly complex.  So is that such a situation where it so complicated, the dynamics are complicated, the evidence is limited, that actually modeling it isn't that valuable? 

Male Speaker:

No.  [laughter] 

Diane Finegood:

That's too simple an answer. 

Male Speaker:

I know.  So focusing on the obesity example that George presented, I mean, in all the models we’re talking about there is incredible complexity that we could never dream of capturing.  I mean, even in the flu, there is -- you know, everybody is -- how long you have it, where you can get it from, how you’re affected, who you -- I mean, so the global model is to be begin the process of understanding the connections.  I think the model as George showed it is the beginning of that process.  There weren't that many compartments, about ten or so.

George Kaplan:

Twenty.

Male Speaker:

Twenty.  Is it too simple?  Maybe, but it’s certainly where to start.  I mean, somehow obesity seems to, at least in my mind, to be within a range of the kind of models that Josh described.  If you think of transmission by word of mouth, by behavior, by family customs.  So is there ever a model that's too complicated?  I hope I never -- I guess I don't believe it.  I think any process one can begin to look at, you know, the basic ingredients and draw the arrows.  I'd love to see the challenge, but I actually think we can begin by simplifying.

Male Speaker:

I mean, I think there is a danger with these kinds of boxologies that one tries to -- and I was certainly guilty of it today, one tries to suggest we should have a theory of everything.  And we -- I think we all know without any empirical experience at all, although there is plenty here, that we're never going to have such a theory.  So the question is, you know, intelligently carving off pieces of that space of boxes, and the boxes within boxes, the sort of Russian doll sort of model, carving off pieces of it that are interesting and makes sense and have some potential for informing knowledge and practice.  And I don't know but I suspect that is only something that comes with a lot of experience and a lot of trial and error. 

Amanda Dempsey:

Hi.  Amanda Dempsey [spelled phonetically] from University of Michigan.  I'm curious to know how do you decide on the parameters or the variables that are a little bit less quantifiable like fear?  How do you insert values for those kinds of factors into models? 

Male Speaker:

I'm going to let my colleagues take that question, and no, I mean, I think that's a very good question and it’s a very formidable challenge, and I don't think, to be completely honest, we haven’t -- I don't think we’ve really attempted to assign numbers in the fear model at this point.  The idea, really, was to show that, you know, by introducing that you can get qualitative behavior that is very unexpected and that matches observed and unexpected qualitative behavior in important historical cases like 1918, and begin to alert people who make decisions in this area that, you know, that might be reducing fear, might be as important as providing vaccine, and think about the containment problem as including these behaviors, and you know, thinking of intelligent ways to try to measure those.  But I will say forthrightly, we, in my project, have not tried to measure them, but would love any assistance you can offer in doing so.  But we plan to.  We intend to try. 

Male Speaker:

In some sense, classical economics is built on an immeasurable quantity, utility, or happiness, and, well, there's a theorem that in fact you don't -- almost any way you measure it, if you make some assumptions, things work.  But if we could only study things that are easily quantifiable, we’d probably leave off two-thirds of the world. 

Male Speaker:

You know, there is, I think, extraordinary opportunities now as we have this information explosion to bring together many, many different kinds of evidence.  And so, for example, somebody somewhere probably has done a study on, I would guess, on how people feel, how fearful they are of being exposed -- of coming down with a particular disease.  How fearful, what their expectations are that if they move into a certain place they'll be a crime victim.  I mean, I think we have small deposits of data across an enormous space of knowledge, and one of the growth areas, I think, is to start developing ways of imputing that knowledge into larger -- into larger scenarios that then we can then plug into these bigger models. 

Male Speaker:

There’s also -- you know, there are indirect things one can measure like the sudden decline in air travel after 9/11.  Or movement around the DC area after, you know, the DC sniper incident or things like this.  I mean, there is social psychology, there's a large literature that would be of use [unintelligible]. 

Male Speaker:

At the micro level, there are certainly chemical compounds within the body that physiologists use to measure stress and fear and one could actually quantify -- you know, they’re highly individualistic but certainly there are candidates around.  Phil?

Phil Tachinsky:

I’m Phil Tachinsky [spelled phonetically].  I’m a recent auto industry retiree and applied mathematician, maybe even an educator.  And I'd like to talk about success.  Imagine a world in which all the modeling problems that deserve to be modeled are being modeled.  All the range of population dynamic issues, all the economic issues, all the sociology issues, and that's being done locally, regionally, nationally, globally, at research agencies and so on.  It’s a lot of modeling.  Who will do it; where will the skills come from, what's necessary to bring us to a full realization of the potential and value in modeling? 

Male Speaker:

Should we talk about the NIH budget?  [laughter]  No, we're going to have to train a lot of people to do this.  I mean, we really are.  There is going to have to be -- especially if we believe in the kind of approaches that, you know, we've been exploring at my center and at Michigan and among our other speakers today. 

You know, there needs to be a serious investment in educating people to do this kind of work.  And at the moment, I would not -- I don't think that's been made yet, and we need to face the fact that if we want this kind of approach to really spread, it’s a big commitment. 

Male Speaker:

It is probably true that we don't teach modeling or even heuristics of it, but as Scott Page’s eyes light up, we actually are beginning to process.  So there are now some courses and systems thinking, and in fact, Phil and I are designing a program on complex systems approaches.  So in some ways, before we do modeling, I think the first step is thinking systems.  Okay?  And we -- I mean, one of the difference between high school and college -- think, for example, history -- is we have more of a focus on how things connect instead of memorizing details.  Then the next step is to begin to, you know, put that into frameworks. 

Male Speaker:

Another very practical challenge is that there are no common tools need to be developed.  I mean, there really is, at the moment, no agent-based modeling framework that most people use so that if the models were being done on different levels, it’d be very hard to compare them, replicate them, so it would be good at some point in the future we develop more common frameworks, tools that would permit people to share models and improve on them, archive them, this sort of thing.

Male Speaker: 

Spoken from the man who has one of the tools, one of the three or four agent-based modeling techniques. 

Male Speaker:

Yeah.  Let me just say that when we originally planned this meeting we expected about half the attendance that we ended up with.  I think this is an indication, and some of you undoubtedly came as agnostics, saying, “Well, let’s see what there.”  But it seemed to me that it’s an indication that there really is a tremendous interest in learning more about this and the three works, we ended up not with one workshop, but with three workshops with roughly a hundred people or so in them.  So I think this is an indication of, you know, the potential for supply driven -- I mean, a demand driven phenomena, that there does seem to be a high demand. 

Now, it’s interesting that in -- if you think, “Well, what are the alternates in terms of training?”  In the health and social sciences, the alternate seems to be a kind of approach to causal modeling that views the experiment as the sine qua non of understanding.  Or simulations of the experiment through one kind of logical or statistical technique or another.  That to me seems about as far from this as one can imagine.  It involves simplifying the world to a point beyond almost recognition in the search for very strong internal validity.  And yet there is certainly a very big push in many of the health sciences, certainly epidemiology, and in many of the social sciences, certainly economics, to move more and more in this direction of over simplification.  So we have a bit of a culture war here.  And it seems to me that we do need to develop more learning opportunities for people to explore not just directed at graphs or other approaches to causal modeling, but complex systems modeling as well.  

Male Speaker:

Jim?

Alan Best:

Alan Best, Vancouver Coastal Health Research Institute.  For want of a better phrase, I'll call myself a population health services researcher.  So, I’m interested in modeling to the extent that it helps me intervene in a more effective way.  The question, the concern that I have listening to the presentation this morning is that, it's about looking at the complexity of the causes, but I’m starting to live by the mantra that complex problems require complex solutions.  And I'm not hearing anything about -- so, how do we then start to model the complex solutions that are required?  Is it a simple linear, once we’ve identified an element in the model we just intervene on that element, or is it something different?  What will that kind of modeling look like?  

[Male Speaker]

Well, in some sense, I think part of the idea I tried to get across was that the old simple models -- the original simple models that one should start with often yield simple, heuristic solutions, and that maybe building in the more complex scenarios lead one to sort of contingency-based solutions, okay?  So I think, as you -- part of the focus of the kind of techniques and approaches I was describing is a very ‑‑ one of the natural outputs are more complex solutions.  And what -- simple models do yield simple solutions.  Just vaccinate wherever, and get the vaccination up to 80 percent.  But a complex model would tell you where, how strong, you know, and give you many more -- since you’ve got a richer space to work on, hopefully a rich -- a more -- a richer solution space, too.  So I think part of the thrust of the complex systems approach is to get beyond simple heuristic solutions. 

[low audio]

Jim Koopman:

Jim Koopman, Epidemiology here at Michigan.  I would like to go back to the very first question that was directed at Josh about explanation, and give a broader context to that.  The first thing that, you know, Josh -- I think you expressed almost all my values about modeling just beautifully.

Josh Epstein:

Thanks.

Jim Koopman:

But now, the but --

[laughter] 

In terms of explanation, there has to be some social process and interchange, and it's not the same as coming up with a theory and testing a theory.  And you gave your explanation in terms of the Kermack-McKendrick phenomena focused on susceptibles.  I used that same model in the introductory parts of my courses, to say how wrong it is to focus on the susceptibles; that the susceptibles don't account for the phenomena, it’s the infectives.  Why does the epidemic end?  Because the infectives go away, not because the susceptibles go away. 

Josh Epstein:

Of course.  As long as there is one index, right?

Jim Koopman:

Right, so there's -- in terms of explanation, and I think this has to do with looking at simple solutions, too, because people come up to the solutions to problems on the basis of the explanations that they have.  So as soon as we start putting explanations, however, in terms of the more complex realities, and we have to establish a social process by which different explanations get interchanged in a meaningful way.  For example, on the HIV epidemic, which I'll talk about briefly, there's been almost a long-term lack of focus on primary infection, and if you don't add the complexity of dynamic detail networks, you don't come up with that explanation.  So I'd like to, you know -- explain your susceptible explanation. 

Josh Epstein:

Well, I mean, first of all, that model was meant to engage an audience of non-modelers and introduce them to a counterintuitive result that is very powerful in some contexts.  It’s certainly true that the infection -- the infection goes away when the infective population is zero, and only then, right?  But the threshold is about the growth rate in the infectives, and the growth rate is positive when the susceptibles exceed the threshold.  I think you'd agree.  And so the issue in showing the model was, when does the second wave happen?  It's when the increase -- when the derivative goes positive again, and the threshold for the derivative to be positive as against the infectives to be positive, is the susceptible threshold.  But I didn't think that sort of technical distinction between a variable and its derivative would be of interest to this particular group, although you and I would merrily talk about it at length, I'm sure. 

[laughter]

Jim Koopman:

However, the number of susceptibles didn't change on the second wave; what changed was that the infectives came out, so that the -- in your--

Josh Epstein:

No, you’re quite wrong.  Susceptibles came out.  People went to the basement without the disease because they were -- purely through fear and government diktat to go to the basement.  Those were susceptible, non-infected people, who then emerged when they believed the level of infection was a good indicator of safety, but as we know, the level of infection is not a good indicator.  And so they -- the susceptibles came out, not the infectives.  I quite disagree there. 

David Abrams:

David Abrams, of the Office of Behavioral and Social Science Research at the NIH.  I think one of the challenges here has to do with trust, and attracting scientists from disciplines to begin to work in these areas and take these models seriously.  And I think one of the big issues is that there's really a gap between what I see as population level focus as in social epidemiology, and the really huge amount of work that's being done at the biologic level as in systems biology.  And what I'm hearing in these talks is that that middle connectivity between those two is where some of the big challenges are.  

It’s sort of the gap between how you can use agent‑based modeling to look at things like fear.  So it’s the behavioral and social science at the proximal levels of interaction at the brain, behavior, and proximal social group.  Those scientist don't seem to be embracing the systems thinking and systems modeling as rapidly as first biology has done, as in systems biology, and now as we see perhaps another wave at the population social episcience.  So I'm wondering how we can sort of encourage and foster this three-level integration, and filling in the connectivity between the micro and the macro. 

[Male Speaker]

Well, that's a good question.  I mean, I think there is no single activity -- there's a whole range of activities, and clearly, one of the essential components is taking activities like this meeting and having a hundred of them, starting to create a knowledge environment which says this isn't just a fringe activity, but it's something which is really at the very core of what people are interested in doing.  

From a science policy perspective, I suspect it's also going to involve investments in centers of excellence which are focused on making exactly these kinds of translations.  And from a disciplinary perspective, we have to recognize that disciplinary silos won't go away, but that there are people who are willing to navigate around and through those silos, and we need to create mentoring that allows those people to know that it is okay to do that.  And we need to create peer reviews, study sections, and search committees that understand that this is a legitimate activity. 

I mean, one of the things we've done, where one of the sites for the Robert Wood Johnson foundation health and society scholars program -- this is a postdoctoral program which has stipends, by the way, of about 80 grand a year, which is focused on getting people to move outside of their disciplinary silos.  So, for example, in our incoming cohort next year, we have an epigenetics person, a behavioral economist, and a social epidemiologist.  And we feel mixing them together with the existing folks we have, in an environment that says it’s okay to even act stupid sometimes, and it's really okay to indicate what your disciplinary priors are, and have those examined -- that creating an environment like that is extraordinarily important. 

[Male Speaker]

It's great to hear your question, David.  You really are a singularity in the NIH framework.  I think -- one real frustration that I think is at the heart of your question, and you know the answer to this, is, you know, working at a single level, it’s so much easier to get a clear answer, and therefore so much easier to get funded, right?  So if you’re going to find out which locus is most responsible for HIV or flu, you build a huge microscope, you get a bunch of people, put them together in a corner of the lab, lock the door, and you get an answer.  Or at the other end, at the macro level, sort of counting bodies as they go by I find can be a little rough.  

But it's -- you know, it’s at the connecting level where the answers aren't so sharp, the connections are harder; it seems to be the key place where everything we care about is happening.  And you know, getting NIH funding for that can be very difficult, as you know.  But I really think it’s a -- NSF is much more concerned about connections and systems thinking, but of course refuses to spend money on health issues because that’s NIH’s bailiwick.  So I think the fact -- the ‑‑ one answer is it’s so easier to get the answers at very narrow levels, asking narrow questions; making connections is harder and, you know, often a little less fulfilling. 

[Male Speaker]

Just a quick comment; I think one of the challenges is, there’s a lot of interdisciplinary work going on at NIH, but I call it horizontal interdisciplinary work within largely a micro-biology level.  So it’s great to have a physicist, a chemist, a mathematician, and a geneticist working together, and that's truly an interdisciplinary team.  But if they’re just working at the level of molecular biology, they’re not making those connections to the next layers up, to neurocircuitry, to behavior, and how agents re-expose or create new epigenetic phenomena, for example, that modify the whole system.  So there’s an example of -- what I think we need is more vertically integrated interdisciplinary work between those larger bodies of biomedical, proximal, psychosocial, and macro socioeconomic-type disciplines, as opposed to within each of those layers having interdisciplinary teams working together.  We really need both. 

[Male Speaker]

I couldn't agree more.  One of my favorite projects that we had here involved Jim Koopman as an epidemologist and I as a mathematician, and we had a physicist and an anthropologist on the team.  And the idea was to use the genetic sequencing of the microbe -- of the agent -- to track disease spread in populations, with the obvious notion that the closer the DNA content of two different microbes is, the more likely it is that the person on top transmitted to the other, and therefore use the population to get -- using micro information to get macro information. 

Scott Lystrop:

Scott Lystrop, from the University of Arizona.  The comment is -- actually, it turns out that NSF is now starting to become interested in health issues, so that's a positive development.  I just thought I’d comment on that.  But I was part of a group at NCI that was beginning to look at systems thinking approaches related to health -- public health issues.  And the thing that struck myself and a number of us was that there are a lot of folks who call themselves systems thinkers, or systems -- you know, looking at systems -- from various analytic perspectives.  

And it also struck us that often times there seem to be pretty significant silos between those groups of scientists.  Now, meetings like this, I think, are perfect ways to begin bridging the silos, but I'm wondering about how this might be done in a more organized, more efficient and maybe rapid way, to begin to connect those silos and better understand what systems thinking is, as opposed to the old saw about pornography: I know it when I see it.  In NIH, where I was earlier, systems thinking isn’t so obvious, but the systems thinkers seem to have it pretty well defined in their own minds, but without necessarily talking with each other.  So I'm just curious about your thoughts on how we might speed this linkage, if you think it should be linked. 

[Male Speaker]

As a person who doesn't do it, but wants to do it, I think one of the ways of dealing with silos is to ignore them, and coming in from the outside to an area you have -- and that would apply to many of you, I think -- you have the advantage of being able to ‑‑ you don't have to swear allegiance to one silo or another.  You may be fortunate enough to run across people who can help you learn the comparative advantages and disadvantages of particular approaches.  You may be extraordinarily fortunate to come across somebody who can help you build the bridges between approaches.  

[Male Speaker]

One great thing about teaching and living at the University of Michigan is the existence of the thin walls between departments.  So, the provost mentioned how many joined appointments there are; I think it’s really true here, and it does make a difference, so I don't think -- all I think every paper I have written in the last ten years has been with someone outside my ‑‑ the disciplines that pay me.  The other part is having nurturing centers like George’s and mine; it’s still not easy, and I think we spend more -- a lot of our time trying to convince the university that even though they like what we’re doing, they need to take it even more seriously.  But I think it’s coming, slow and easier at some places than others. 

Mitch Waldrop:

I'm Mitch Waldrop.  I'm a writer in Washington, DC, self-unemployed as you might say.  

[Male Speaker]

Mitch has the world's first great book on complexity, with that title.

Mitch Waldrop:

At the risk of stepping on my own talk tonight at dinner, I’ve got a question for Josh and probably for all of you.  When you’re talking about epidemics and modeling how one deals with an epidemic, you’re talking about -- maybe you should vaccinate certain people first, and not others.  Maybe you should shut down travel or maybe not shut down travel.  Maybe you should do this and that; maybe you should declare a quarantine, maybe not, depending on the characteristics of the disease.  How do you communicate this to the public, and to the decision makers who have to do it?

A lot of these conclusions are profoundly unintuitive; there's going to be enormous pressure to inoculate everybody you can get at, to declare a quarantine immediately, whether or not it’s effective or even maybe counterproductive.  And showing people -- I can promise you -- showing people graphs and charts isn't going to do it.  It's very hard for people to get that stuff if you aren’t professionals.  So, how do you actually communicate this kind of non-intuitive result? 

[Male Speaker]

Yeah, I mean, I think that’s -- well, first of course, this is now a political, not a modeling question.  Let’s get that straight.  And I think it’s very demanding, and let me say, most of the people -- I mean, again, I'll speak from my own experience on smallpox, for example -- most public health officials are uncomfortable with differential equations, and with mathematics in general.  It’s true.   I know that’s shocking, but it’s true.  And so, when you have a counter ‑‑ especially when you have a counterintuitive result, and you can only present it in the form of differential equations, you’re even less likely to carry the day, because they distrust the method and they distrust the result, and you’re kind of skunked.  I have to admit that agent‑based computational models have the advantage, that they remove the immediate mathematical barrier.

You can say, “Here is the space on which activity is unfolding.  It is a two-town county with a hospital and schools and workplaces.  Here are the households, people wake up, the kids go to school, the parents go to work -- they come home at night.”  People can see what’s going on -- that's helpful.  If you can calibrate it to actual historical data that's another measure of credibility, but one of the things that’s worked really well is to have some of these people involved at the outset. 

So, D.A. Henderson, one of the huge figures in American public health, was actually engaged at the start of this smallpox modeling activity.  And we sat with D.A. and other experts, weekly, for a couple of years, to thrash out, what are appropriate assumptions for natural history of smallpox?  What should be the incubation period and the infectiousness and pathogenicity and hemorrhagic smallpox and smallpox modified by prior immunity, and ordinary smallpox, and so on?  So, there was a certain amount of just buy-in, by important people, because they were engaged in the construction of the model from the outset.  And then when you reach a counterintuitive result, you have a better chance of convincing people that it’s worth their attention. 

The other nice thing about agent models is that when you are done, they’re no less rigorous than the equation-based formulation.  The results can be compared to data; you build up a big statistical portrait of outcomes and compare them to known distributions.  So, I mean, you know -- with everything like that working together, you can have a huge impact on the way -- on the public health choices that are actually considered, and even those that are adopted.  But this is a very long answer to a very tough question. 

[Male Speaker]

Well, I -- just to comment on that --

[Male Speaker]

Actually, if I may, I was about to turn the question back to you, Mitch, because you're the one I’d asked that question of, and I’d love to hear your comments, because as a journalist who's been so successful at getting these -- or advertising our work, thank you -- you’re the man, so what are your insights?  I’m also going to sneak out.  I have an airport run I have to do right now, so, I will be back. 

Mitch Waldrop:

Well, I don't have any profound answers -- I was actually interested in your answers.  I think, clearly, you do need to do a lot of persuading and getting buy-in at the scientific community level.  You do not want to be having a public argument at the time the epidemic is spreading.  You need a lot of dialogue within the community.  Your point about getting some of the decision makers involved in building the model, I think, is absolutely critical.  

Unfortunately -- and I've asked people in Washington about this -- unfortunately, the higher you go in the chain, the real decision makers have effectively zero time to do this.  They’ve got so many demands on their time, so many distractions.  You're not -- you cannot imagine a senator or even -- maybe Al Gore -- sitting down and actually looking at this.  They just won't have time. 

[Male Speaker]

A staffer might.

[Male Speaker]

A staffer might for five minutes. 

[Male Speaker]

That’s kind of true and kind of not, actually. On pandemic flu -- okay, again, this is the NIH MIDAS project that I am part of.  I mean, we were asked, for example, in one case -- if there’s a pandemic flu outbreak in Thailand, there's a finite -- a given stockpile of antiviral drug in the United States.  Suppose you detect the outbreak in Thailand, yes or no?  Should we take the entire stockpile, send it to Thailand and try to clamp the epidemic there, or withhold it for Americans in the event that the thing goes global?  And they wanted an answer and solicited one from NIH MIDAS, and it's the same on national pandemic.  I mean, this was briefed -- the guys who built the American model, not the global one -- but Neil Ferguson and Ira Longine, I mean, they briefed people very, very close to Levitt and others on what should be the containment strategy for the United States. 

[Male Speaker]

Well, that is very encouraging, but what I'll bet did not happen is that the people at the top, even those who had asked for the model, had sat down and really gone through the assumptions that went into the model, done the trade offs; all the things that really give you the benefit.  They just -- unfortunately just aren’t going to have time.  So, how you explain it, how you -- the visualizations, all that -- all that has to be critical. 

[Male Speaker]

I don't think we can put the burden of moving towards evidence-based policy solely on people doing complex systems modeling.  In fact, there's another issue here, which is that -- which is something that people in public health struggle with all the time, particularly those who are interested in prevention -- that you don't have any bodies to show when you have prevented -- prevented a case or a death, and in fact, what has moved policy -- I think in many regards much more strongly -- has been people in wheelchairs or graves or, you know, body counts.  And there's this general problem of -- strategies people tend to use very comparative things, you know.  The report a year ago -- which was not based on complex systems modeling, which suggested that because of the obesity epidemic, we might have a generation that lived less long than the previous generation -- generated an enormous amount of interest at the political level, as well as at the popular level.

So as you know, a lot of this is more framing and getting the right metaphor and the right anecdote. 

[Male Speaker]

And once in a great while, you’re dealing with vested interests that don't actually care about what’s true. 

[laughter]

[Male Speaker]

That's extremely rare, but it does happen.

[Male Speaker]

Yeah, it does happen.

[Male Speaker]

Thank you.

[Female Speaker]

[Unintelligible] from Community Health, Brown University.  I had two questions.  One is more specific, and one is more general.  The general one is, how does complex systems relate to decision theory as another discipline, interdiscipline? 

[Male Speaker]

Well, again, how does complex system relate to decision theory?  I think the main thing is, in decision theory or game theory or mathematical economics or any of these formal areas, I think there is typically a presumption of full information and very high rationality; that people can actually work out the tree of my moves and his possible moves, and what's the optimal decision given all the strategic avenues available to all players.  And I think those two, full information and optimization, basically are really relaxed in agent‑based modeling, certainly, and in much of complex systems modeling.  So we assume bounded information rather than global information; that people rely on heuristics rather than some demanding optimization routine. 

So I would say bounded rationality, local information -- and again, there can be all these heterogeneous rules out there, and those that show selective advantage can multiply, and those that don't can be selected out.  So, I mean, there's a level of adaptation and learning, and local information, and evolution, and heterogeneity, and all of that stuff that I think is largely absent from decision theory in the sort of loose Raiffa tradition, if I may.

[Female Speaker]

So you think there is not much crossed learning? 

[Male Speaker]

Sorry?

[Female Speaker]

You don't think there is much crossed learning between those two interdisciplines? 

[Male Speaker]

I think there is some.  I will admit that I am not positive, exactly, what the frontiers of decision theory these days are.  My colleague, Scott Page, might know better than I, but my impression, from where I sit, is that they’re largely off doing very refined mathematical exercise.  And I think -- 

[Female Speaker]

I think they’re getting into some probability, too --

[Male Speaker]

We have only a couple more minutes, so maybe we should move --

[Female Speaker]

Could I move on to just another -- maybe it is a too-detailed question, but when you were talking about your model, you’re modeling two processes.  You were modeling the process of infection and the process of avoidance; going to the basement.  You were only implicitly -- the dependence between these processes was only implicit.  It seemed to be implicit, and because you -- perhaps some assumptions about the fact that the population is stable, that there's no renewal, perhaps, in the population, and I'm wondering whether you, in fact, did model the dependence between these two processes more explicitly.  And if you would, you would think about the dependence and perhaps have gotten to think about that observation about the seasonality more. 

[Male Speaker]

Yeah, maybe.  I guess I'm not entirely clear about the first model.  They’re two distinct models, of course, and the epidemic one -- I guess I think they are already interdependent,  I mean, the increase in the epidemic increases the level of fear.  If people are more afraid, they go out of circulation, which reduces the level of contagion in an epidemic.  So I think they’re already coupled --

[Female Speaker]

But that's because you have a constant population.  That’s what introduces the dependence. 

[Male Speaker]

Yeah.  I could certainly extend it so that there were so-called vital dynamics of birth and death and removal and other things, and I think it would be worth extending it in those ways. 

[Female Speaker]

In other ways of interdependence, conditional dependence on the status of the epidemic. 

[Male Speaker]

Thank you very much.  We've run out of time.

[applause]

Female Speaker:

Okay, thanks again to our speakers and to all of you for your questions and discussion . 

[intermission]

Sandro Gilea:

I'm Sandro Gilea, I'm one of the faculty members at the Center for Social Epidemiology and Population Health, and I'm facilitating this afternoon.  And I'm going to move us along to stay on time.  And our first speaker this afternoon is Scott Page, who is a professor of complex systems, political science and economics here at the University of Michigan and also an external faculty member at the Santa Fe Institute.  And I'll cut the introduction short because Carl already sort of introduced Scott and his work earlier.  So, Scott over to you.

Scott Page:

Let’s hope this works.  What I'm going to talk about today is the topic of emergence; I'm going to talk about it in the context of social systems, not emergence at large.  Now, the field of complex systems is interesting because at some level it started out as a set of metaphors and ideas.  And over the past 15, 20 years we've sort of moved from metaphors to mathematics and models and statistics.  And so, in some sense what we've done, or what we're trying to do at Santa Fe, at Michigan, at Brookings, at George Mason, is in some sense speak science to metaphors, speak mathematics to metaphor. 

An area where that's been, I think, particularly valuable -- and we've had a lot of breakthroughs -- is in the subject of emergence.  This past year at Michigan we had a conference on emergence, basically hosted by physics, and at that conference I was asked to talk about the concept of emergence with respect to social systems.  What I'm going to do today is sort of talk a little bit about -- mostly about social systems, but I'll give a little bit of the physics that I picked up sort of in the hallways during that talk.  

So, the first thing I want to do is I want to talk about emergence: what is it?  In the simple version of emergence, sort of the best version that I've ever heard is this; if you could imagine putting a frog in a blender and turning it on, and you’d get this just sort of green, red, gooey mess, right?  If you could somehow hit a reverse button, and you could spin it and that green, red, gooey mess would turn into a frog -- that would be emergence, right?  

[laughter]

So, what I want to do is I want to talk about -- and again, at this idea, sort of -- when we talk about -- what do scientists do?  Some of us are sort of lumpers; what we do is we take a whole bunch of things out in the real world and say, “Look, these are all examples of emergence.”  And then after we've lumped things, what we typically do is we split thing back apart and we say, “Well, there's actually different types of emergence.”  And so, what I'm going to do today is I'm going to talk about four different types of social emergence, and then I'll talk quickly about applications to population health.  

So, here's what I’ve learned from the physicists, that what emergence is, is it's always structures or properties or functionalities that arise through a process of aggregation, or in some cases self-organization, in a complex system or a complex adaptive system.  The difference between a complex system and a complex adaptive system is important.  In a complex system we just think of things sort of following rules and aggregating, sort of like physical entities, like magnets.  In a complex adaptive system we think of those things as having the ability to reify, construct models, and adapt.  So, models with people are complex adaptive systems; models of carbon atoms are complex systems.  

So, the examples that the physicists like to give are water molecules.  If you take an individual water molecule, there's no sense in which you can say it's wet, right?  And there's also no sense in which that water molecule has a temperature if it's just sitting there in isolation, right?  So it has no temperature or it has no wetness.  But Carl and I went to Russia to do some research on this, and it turns out you can actually get -- emergent properties of water can be very wet and very cold, okay?  So, cold -- temperature and fluidity are emergent properties.  

So, what are the fundamental characteristics of emergent properties?  The first one is that it is something that is true, and this is sort of an idea I am borrowing from Rob Axtell; it's something that is true at the macro level, but it's not true at the micro level.  And I'm going to make this distinction in more detail as I move along.  

The second is that it has sort of novel, new capabilities.  So, it's something that a swarm of bees can do, something that no individual bee can do, for example, like shut down an aircraft, as we learned last week, right?  It's something that in some sense is also statistically coherent and predictable, so you can actually do science at the level of emergent phenomena.  So, we can talk about something called the heart, and talk about how the heart functions without actually looking at each individual cell within the heart.  

And the last thing is, is that it's something that is bottom up, not top down.  So if you look at the US military, which has an organization which functions as this giant structure, that's something that's organized from the top, where people follow specific rules that were handed down through some chain of command.  When we think about emergence, we think about something that has actually sort of risen up from the bottom.  

Okay, so the standard sort of emergent struggle people talk about is they say, “Look, there's sort of emergent levels in science; there's atoms, then there's cells, then there's organs, then there's systems, like circulatory systems, respiratory systems, there's individuals, there's families, there's communities, there's nations; each one of these things sort of emerges from the level below it, right?  And it's also the case that we have a science that deals with each one of these things, right?  So we have physicists, biologists, medical doctors, sociologists, psychologists, political scientists, economists, that sort of thing, and what we do is we sort of ignore everything that happened at the lower level, and we just sort of study the coherent properties of the particular level we are interested in.  

What I want to talk about today is not emergence at large, because that would take far too long; Carl and I have to do a 24-hour like tag team emergence at Lamonze sort of thing. So instead, what I’m going to do is I'm going to talk about four types of social emergence that a lot of people in this room have contributed to.  So, I'm going to talk about work by -- some of the stuff that Josh and Rob and Carl, Scott de Marchi, Jasmina, and other people have done.  And the four types I want to talk about are spatial, distributional, scale, and functional emergence.  What I'm going to do is I'm going to first describe each of these in sort of a snippet, and then I’ll give more detailed examples.  

So, spatial emergence -- what do we mean by spatial emergence?  We mean the emergence of some sort of spatial pattern that differs from the micro level behavior.  So, what we get is we get something that we can actually see somewhere in space, so, segregation in cities, actually the formation of cities themselves, and pedestrian lanes.  So, if you're ever at a busy airport, you'll notice that there seems to be a highway system that develops when people get crowded enough; there's one lane going this way and one lane going this way.  There's no markings on the floor, typically, right, that say, “This direction walks here, this side walks here,” but that just sort of naturally emerges.  

Distributional emergence -- and Rob Axtell has done some stuff on this, and I'm sure he'll talk about it today -- is the emergence of a macro level distribution that is not obvious from micro level behavior.  So, let me be more specific about this.  If we think about -- one of the things that we hold to be universally true is the central limit theorem, the law of large numbers, that if we take enough -- which are separate things -- but if we take independent events, what we'll get is, we'll get a nice, normal distribution; a bell curve.  

A lot of the regularities of our world we get away with because of the fact of this central limit theorem.  So if I go to the grocery store this afternoon, right at 4:00, and I count how many people are there, and if I go tomorrow at 4:00 and the next day at 4:00, and so on, and I plot that, I'll probably get a normal distribution.  And the reason why is, people's decision whether or not to go to the grocery store depend on sums of a whole bunch of different random events, and if I sum those things up, what I'll get is a nice, normal distribution.  

If that didn't hold -- suppose it was the case that by summing up a whole bunch of little, individual, random events, I got something that had a long tail; I got like a power-law distribution.  That would mean that sometimes I go to the grocery store and there would be four million people there, right, and other times I would go to the store and there would be no one there.  So, most of the time I would go to the store it would be empty, but every once and awhile, there'd be lots and lots of people there.  

One of the things we try to understand about complex systems is when things add up in ways that aren't just simply additive; when it's not just sort of x1 + x2 + x3, where there's interactions between these variables, what we can get is we can get power-laws, we can get other sorts of long tailed distributions.  We can sometimes get twin peaks; if you look at the literature on GDP growth across countries, what we see is there's actually divergence, where there's high growth countries and low growth countries.  So one of the things we try to understand is, how do we get these distributional emergent properties?  

A third one is scale emergence, and this is the atom, cell, organ, person, nation sort of thing, where we get a macro level phenomenon that either cannot or does not exist at the micro level.  So this is the case of water being wet or water being cold, and in the social context I'm going to talk about efficiency of markets, accuracy of predictions, or the emergence of culture.  So, one of the jokes we like to make in the emergence -- there are a lot of good emergence jokes like the frog,  but one of the ones we like to make a lot is that if there were just one guy from France, just one person from France, there'd be no such thing as being French.  It’d just be some odd guy from [unintelligible].  But by having a whole bunch of people who act in that particular way, there's something called "Frenchness."  So, "Frenchness" can only exist at a certain level of scale.  

The last time I'll talk about this, what we call functional emergence -- and this is where an object or action takes on some sort of function or meaning that wasn't built into the system.  So, examples here: money is a great example; I'll talk about some models of the emergence of money.  And then networks are another example, where the network sort of forms and has these properties that no one thought of, but it has a certain function -- in this case for disease, it’s going to play the role of firewall.  

Okay.  A quick caveat, though -- and this is a caveat that became very clear when we had this conference with physicists and social scientists and other people.  When we write down physical models of emergence, once we know how a carbon atom’s going to behave, or once we know how a water molecule is going to behave, we can just look at one of them and aggregate up.  We can figure out how all the other ones are going to work, as well.  But with people that's not true.  People are idiosyncratic; they’re different, they're strange, their behaviors are contingent on past histories.  And so when we look at the patterns that are going to evolve in a system of humans, it's likely to be a little less structured and beautiful, and a lot more interesting than the ones we see in the physical world.  So, all these beautiful butterfly graphs from chaos, you just aren’t going to see those sorts of things if you look at human systems.  

So if we look at people, we never quite know what's going to happen.  And here's an example, a friend of mine as a joke sent me some mojito glasses, and they came packed in this wrapping paper so the mojito glasses wouldn't break.  So this hair -- this became hair, then, for my two boys, and the emergent phenomenon; this was just the beginning of what was a long butterfly effect which caused several hours of cleaning.  But the point is, we can never -- because of the fact that once something's thrown in an environment and once you've got adaptive beings like people, you can never quite be sure what's going to happen.

Okay, so let me go through each of the four things.  First we're going to talk about spatial emergence, and a classic example here is Schelling’s Tipping Model.  So, here's the model: there's a party, and there's two rooms; there's a kitchen and a living room, and there's two types of people in this party, there's Republicans and Democrats.  So, the behavior is as follows: basically people randomly switch rooms with some probability.  And you're perfectly happy being in either room, but the problem is you suddenly realize if fewer than 30 percent of the people in your room are of your same political persuasion, right, so if you suddenly find yourself surrounded by Republicans and you're a Democrat, or surrounded by Democrats and you're a Republican, you decide, you know what, I think I'm going to move to the other room.  

Well, this is a random law, and we can actually analyze this mathematically, and we get that there's two absorbing states, both of which look like this: Republicans all in one room, Democrats all in the other room.  So what we've got is we've got people who are just randomly moving, and they’re pretty tolerant; they only start to segregate themselves if it's the case that there's a lot of people different from them.  But what we get is we get this emergence segregation.  

Then there's this question -- this was considered the classic example of emergence, but people like Rob and other people questioned this, and the reason why is the following: is this emergence?  And you could say, “Well, yes, it's emergence because the people are actually pretty tolerant; they're just randomly moving around and they only segregate themselves if things get bad, and we're getting segregation given tolerant people.”  But, the argument that this isn't emergent is that this is really just an amplification, that people really are biased against one another.  And what we're getting is just a resultant effect.  

And so what we want to do is we want to make the following distinction: suppose we have some property P, whether it's segregation, whether it's a functionality, whether it's a distribution, whether it’s being wet; if P is true at both the micro and the macro level, there's some sense in which what we're talking about is some sort of resultant behavior.  All we're just getting is more of the same; if P is true at the macro level, but it's not true at the micro level, then we can think of this as something that is emergent.  And Rob gave a really nice talk in 2002 on this. So it's this distinction between micro and macro that's going to be crucial.  

So let me give another example of this, and I'm going to poke fun at myself as well as some other people here.  I’m going to describe three models of city formation.  The first one is due to Brian Arthur, it's a 1989 paper; it's a very famous paper.  And he wanted to describe how cities formed, and here's how the model worked.  Firms and people want to locate at the same spot as other people because there's positive feedback, because you like hanging out with other people, because there are people around, it's just a lot of fun, they'll teach you how to make little products that make lots of money so we can all move to Silicon Valley.  And so what he gets is, he gets a city.  

Now, at one level -- and I realize this is being taped -- this isn't very deep.  What does EC say?  Let’s go through the logic, because it's not very subtle here: people want to live in the same place as other people, so therefore we get cities.  Okay.  I'll say it again really slowly: everybody wants to live in the same place, and then we're going to get cities.  Josh can give an agent-based model of this later.  

Paul Krugman came in and said, “Look, that's an over simplification, it's actually much more complicated than that.  What it is, is it costs money to transport things, and so people want to live near one another.”  So, let’s go through this very slowly.  Now in this case people don't want to live in the exact same place as [unintelligible]; they just want to live near other people.  And so what Paul gets, is he gets that everybody lives in one city in the center.  So, Brian's model is people live in San Francisco; Paul's model is people live in Kansas City.  

So, in both of these cases I would argue that this isn't the emergence of cities, even though both papers talked about emergent cities, because in both cases the macro level pattern is actually the same thing, it's identical as the micro level behavior.  In the one case, everybody wants to live in the same place, so they all live in the same place.  In the other model everybody wants to live close to everybody, so they all live close to everybody.  

So, with some undergrads at Cal Tech on a lark, I decided to write a model of misanthropes, which works as follows: let’s suppose that you hate other people.  Let’s just do the exact opposite.  And the idea is this, it’s that -- I figured out that Carl comes and eats my pizza and drinks my beer; he just comes over to my house and eats my food, basically, and I realize that Rob does as well. And then I figure out that the probability that someone comes and eats my food and drinks my beer is proportional to their distance to me.  So, now what I want to do is I just want to maximize my distance from everybody else.  I'm the anti-Krugman.  So what happens if everybody in the world wants to maximize their distance from everybody else?  We get New York, Miami, LA, and Seattle.  It turns out that you get cities, and you get cities in the four corners.  

So, here's a case where in some sense here you can say, “Well, the cities actually emerge because no one is trying to form cities; there are people trying to run away from one another, but what happens is they all run away to the same places.”  And you can prove mathematically that what you get is you get cities in the four corners.  So, in this case, the macro level behavior, which is people in cities, in some sense is counter to the individual level behavior, which is, we want to live as far away from other people as possible.  

So, that’s spatial emergence.  Now we'll talk about distributional emergence.  And again, this is the power law, central limit theorem sort of stuff.  So, here's a model by Herb Simon -- one of the great empirical findings about city sizes is this: city sizes satisfy a power law, so basically New York is twice the size of LA, which is twice the size of Chicago, which is twice the size of Philadelphia.  

So, Simon constructed the following model: imagine if people come out of a chute, and at each moment in time they decide where to live.  So the model works as follows: with some small probability, they basically form a new city; they might form a new religion when they form the new city, who knows, but they just go form a new city.  Otherwise, they join an existing city, and the probability that they move to a city is proportional to its size.  So, the bigger the city, the more likely they are to move to it.  

So at the micro level, you’ve got what we call preferential attachment; you're more likely to move where other people are, and you've got a little bit of randomness.  But at the macro level you get from this model, is you end up getting a power law distribution of city sizes.  So what you end up getting, is you get that the city size distribution is exactly what we see in the real world from this really simple model.  Now, this wasn't in any way built-in, right, we didn't expect to get this power law distribution -- you just construct the rate that was -- here's a simple model of how people might decide where to live, and what he gets is he gets this nice power law distribution.  

Now I cite down here a paper by Mark Newman called “Power Laws in 2004.”  Mark has a very nice paper; he walks through all of these different ways where we might get power laws, because one of the things we see in the real world is sometimes we see nice, normal distributions, sometimes we see long tail distributions, and one of the things we want to understand is, what are the underlying properties of a system that would lead to the emergence of a power law, as opposed to the emergence of a standard sort of Galcion distribution?  And I was going to put up -- I pulled some slides, Rob Axtell has a really nice paper on the size distribution of firms, but I'm hoping he'll talk about that later.  

The next example that I'm going to talk about is scale emergence, and this gets a little bit trickier.  I'm going to talk about -- first of all, rational markets.  So here's this model that Carl was talking about, that economists write down, and Gary Becker, Alan Kerman, Epstein and Axtell have stuff on this -- this is based on a version of what's called the Lucas Tree model.  Let’s say we have two apple groves -- two groves, one is an apple grove, and one is a peach grove; these are of equal size, and they're separated by a vast desert.  We've got -- way over here is an apple grove; way over here is a peach grove.  

The agents in this model basically can pick this fruit and carry it around in little sacks and trade it with other people.  And what they want to do is people's preferences are that they like apples and peaches equally well.  So what they want to do is they want to trade apples for peaches.  Now, agents have no idea what the price is of these things, they no idea how -- they haven't got these models, so they've figured out, boy, there's lots of apples over here and there's lots of peaches.  They don't know that there's equal numbers; they're just going around and trading.  

Well, if when Josh and I meet, if we just traded some random configuration so that he's better off and I'm better off, if we plot over time what the average price looks like, if people start making random offers, and if the random offer looks good I take it, what we end getting at the macro level is rational behavior.  On average, apples will trade for peaches at close to a one-to-one ratio.  So, here at the micro level we've got completely irrational, random behavior.  People are picking stuff; they bump into someone and say, “Hey is this better for you?  It's better for me; let's trade.”  So, we get these trades.  

But at the macro level what we get is something that people would call the efficient market, something like efficient markets; we're getting apples that are trading for peaches on average at a one-to-one ratio.  So this is a case where we are constructing an institution that leads to something like emergent rationality.  And this is one reason why Becker, early on, talked about the power of the budget constraint in markets to lead to efficiency.  

Example two, the wise crowd; this is going to some of my own work, combined with some ideas from Jim Zerwicki, which -- suppose we’ve got a function that maps this r to the n; it's supposed to be just some real numbers in some n-dimensional space in the up or down.  So, consider the following scenario: the stock market tomorrow is either going to go up or down.  And suppose you could make a bid on whether you think the stock market is going to go up or down.  Well, what would you do?  You'd basically have some model that you'd use, based on all of the variables out there, and based on that model, you would make some sort of prediction.  

Well, what we can use -- we can say, “Let's let people choose some sort of basis, some representation of the world, and on a subset of three or four variables we can construct some simple predictive models.  Constructing a huge group of people, each one of them is just constructing some basis for understanding the world, just a few variables, and their payoff is going to be if they're correct, they get to split some pile of money.  So it depends on the number of correct -- the payoff depends on the number of people who are correct, and if they're incorrect, they get nothing. 

What you get is, you get the following: the collective error of these people -- so this is collected error, squared -- ends up equaling their average error squared, minus the variants in their predictions.  So what you get, then, is you create a whole bunch of people who are reasonably smart, but they're also fairly diverse, and average error is going to be reasonably small, and variance will be reasonably high, and what that means is collective error will be reasonably low.  So what comes out of this, is if I construct a world of diverse people predicting something, all of whom are reasonably good, what I'll get is I’ll get a crowd that’s collectively very accurate.  

So what I'm getting is I'm getting this scale phenomenon of a wise crowd, which isn't true of anyone in the crowd.  So I talk about this in my book, the difference: "How the Power of Diversity Creates Better Groups," blah blah blah blah blah; in that, what we see -- and I give a couple of examples where you actually get that the crowd is smarter than anybody in it.  And the reason the crowd is smarter than anybody in it is because the variants in the predictions in the crowd is high enough that it is reducing the crowd's collective error.  And again, at the micro level we've got diverse, moderately accurate people with negatively correlated predictions, and at the macro level we're getting accurate predictions.  

The last type I'm going to talk about is functional emergence, and I'm going to give two examples here that are slightly more involved, because this is probably the hardest part of emergence.  The first one is going to deal with banks.  So, let's suppose I've got n banks, and these banks can make risky loans or safe loans.  Now, risky loans have a higher expected return, but as Neil Bush knows, they can also fail, right?  I'm going to connect these banks in a linear network, and what the means is, if a bank’s next to -- adjacent to another bank, if that bank -- they loan money to their neighboring banks.  If your neighboring bank fails, that makes it likely that you'll fail.  

So, let’s suppose I lay this out just like this, so the red means risky, blue means safe.  So here's a whole bunch of banks; this one’s risky, safe, risky, safe, and there's three risky-s in a row.  Well, this risky bank -- all of a sudden their bank loan fails, and when it fails, it spreads to the risky banks, and so -- then all those fail, but these safe banks, they end up not failing.  

Now this model, even though it's a model of bank failure, is actually analogous to a model of forest fires.  So, now let’s think of this as a model of a forest, where r is that there's a tree there, and s is that there's no tree.  Now, what the f represents here is a fire, so in this tree, if this r catches on fire, all of the adjacent trees catch fire.  But these locations, because they don't have a tree on them, they can't burn.  And as a result, this tree is saved.  The difference, though -- there’s a difference between banks and trees in the sense that we would like to think that the banks can decide whether or not to make the risky loans, whereas the trees don't necessarily get to decide whether or not they are going to grow.  

So, let’s construct a learning model on this, and this is the difference between a complex system, where you've just got trees growing, and a complex adaptive system where what's happening is these banks are trying to decide, “Do I make the risky loan, or do I not make the risky loan?”  So, banks are going to have some probability of making a risky loan, and what they’re going to do is they're going to adjust that over time.  They’re going to say, “Well, I've been making risky loans, and I'm losing money; I keep getting hit by lightning; I keep having failures, or I'm connected to this guy who’s making risky loans and he keeps having failures, and so then I fail.”  Or, they might decide, “I'm making these safe loans, and I'm doing really poorly, so I'm going to switch and make risky loans.”  So they just learn over time, using a simple reinforcement rule from psychology.  

Well, here's what happens: we up getting firewalls, and what happens is if you let this system run over a long period of time, what happens is you'll get that these are the rules that the banks evolve.  You'll get that there's a safe bank, and then some risky banks, and then a safe bank and then some risky banks, and then a safe bank and then some risky banks.  And so what happens is these firewalls emerge.  Now, what's important about this is there was no central planner who came in and said, “You guys should construct firewalls.”  And in fact, you can show this is an optimal solution to this problem, if you want to maximize total return of the bank.  Instead, each bank was learning, “Should I make risky loans or not?”  

But what happens is, is their learning environments actually become heterogeneous.  So consider this one right here, this bank right here: it's got two risky loans -- two banks making risky loans to this side, three to this side.  It learns to play safe.  The reason it learns to play safe is it's surrounded by five banks making risky loans.  If it starts making risky loans, any time one of these other five fails, it fails.  So, its return for making risky loans is actually very, very low, so it's better off being safe.  In contrast, if you take this guy to the right of him, or to the left of him, it can make risky loans, and the reason it can make risky loans is because it's got this safe person sitting to its left, or its right from your perspective.  And so it basically can go ahead and make those risky loans.  

So what happens is, they evolve different learning environments, and as they evolve different learning environments, what you get is you get these emergence of these firewalls.  So no one asked for the firewalls; no one was saying, “Hey, let's create firewalls,” but these firewalls just naturally emerged from the simple learning dynamic of this system.  So, at the micro level, banks are just trying to maximize profits; they're totally in it for themselves.  At the macro level, what we get is we get these very functional firewalls, and you can prove, again, that this is the optimal thing to do.  

The second example is even more involved, and this involves money, which if you’re an economist, every talk you have to mention money, or they take away your card.  So as David Krakauer figured out, the little symbol I've been using -- this is actually an early American copper ax head.  And this was a unit of money in Central America.  It's very cool, as well; it's now a piece of art.  And what I want to do is I want to talk about a model from Peter Howitt, and so here's how this works: you got a whole bunch of agents who each morning they sit at home and they produce some goods, so they make stuff, and then they go into market in the afternoon and they trade in some sort of bazaar. 

Now -- so, one person may make an ax head, they may construct a couple iPods, and they may grow an apple. Somebody else may make one of these cool little ax heads and then they make three apples.  And so then what they're going to do is, they're going to show up at the market and they're going to trade.  Michael might be agent one, he's got the two iPods, I've got all the apples, and we might trade an iPod for an apple.  So, he may make me an offer and he'll say, “Hey, I'll trade you these two iPods for an apple,” and I can either decide to accept this or reject it.  

Now, here's what happens; let’s suppose there is no money in this economy.  There's n times n minus one over two pairs of relative prices.  What does that mean?  If there's n goods -- let’s suppose there's N things being made, and I want to think about what could be traded for what.  Well, for each good -- so, each of the n goods could be picked, and then each of the n minus one other goods could be picked.  So, I could pick apples or iPods or ax heads first.  And whatever I pick first, I'd have two things to pick from second.  The reason we divide by two is it doesn't matter whether I pick apples first and iPods second, or iPods first and apples second.  But the point is, there's basically n squared, where n is the number of different goods; sort of pairs of prices.  

Well, this is a lot of things to remember.  I've got to sit around and think, okay, what is an iPod worth in terms of a shoelace, or what is one of these cool laser pointers I got in my bag, if you didn't see it, what is that worth relative to the bags?  So I've got to keep track of everything in terms of relative prices, and that gets really complicated.  It would be better if we had some form of money, where we just took everything in terms of dollars.  

But what happens if you create a market like this, and Peter Howitt has done it -- eventually money emerges in these models.  Now, what do I mean by money emerges?  Eventually, almost every trade takes place with respect to a single good.  Say the copper ax head -- so if Josh wants to trade -- so if my client wanted to trade apples for iPods, what we would do is I would trade him apples for ax heads, and then he would trade me ax heads for iPods.  So all trades take place with respect to one good, because we all learn the price of everything relative to that one good.  And so what happens is the ax head actually emerges as the medium of exchange.  

So with money, you only need n prices.  Before we needed n times n minus one; now we only need n.  We can write down everything in terms of the ax heads.  We can say an ax head is worth two iPods, and an ax head is worth three apples.  Now, again, he doesn't build in the ax head as money; the ax head just emerges as money.  So, what becomes money?  Well, it helps to be incredibly abundant, right, you want to have enough of these things that we can actually use them to trade, but it can't be too abundant.  You can't use dandelions as money, because then there's just too much money around.  It also has to be storable.  

So, if you look at the things that people actually use for money, it’s often things like whale teeth, ax heads and if possible, it's something that actually has some other use. I'm not sure what the whale tooth could be used for other than pummeling one of your friends or something.  So again, at the micro level, the copper ax head had no special meaning.  But at the macro level it had become a unit of exchange, it becomes what -- in a store of value; it becomes what economists would formally define as money.  Again, this wasn't built into the system; the money emerges.  

So, let me quickly summarize.  One of the key points here is to distinguish between something that’s resultant, and emergent.  So, a phenomenon's resultant if it's true at the micro level, and the same thing is true at the macro level.  It's emergent if in some sense what's happening at the macro level differs from, or is either -- or possibly even couldn't be true, like the one water molecule couldn’t be wet.  It couldn't be true at the micro level, but it is true at the macro level.  

So, the types of emergence -- and I want to talk about these in the context of stuff that's now -- I think more relevant for this crowd -- are as follows.  The first one is spatial emergence.  So, why might we care about spatial emergence if we're interested in the themes of this conference, in population health?  One is, we might look at the geographic concentration of disease, of a certain behavior, or any other characteristic of an economy or a society.  Whether it’s -- one of things that is shocking when you go from the Midwest, to California, to the east coast you see these massive differences in how people behave.  You see what you might think of spatial emergence, right, where there’s just spatial differences in how people do things.

 

Distributional emergence, if you look at -- when we talk about health disparities, life expectancies, income, wealth, etcetera, right, all that distributional data we see, and sometimes we can think of those as distributionally emergent phenomena.  Some of those things are going to be nice, sort of Galcion distributions, other ones aren't.  When things aren't Galcion distributions, we want to try and understand what's happening at the micro level, right, to allow those things to take different shapes.  

 

Scale emergence may be one of the most relevant.  If we think of pandemics, epidemics, culture, again these all exist at the macro scale; they don't exist at the individual level.  We can't look at one person’s disease and necessarily know that it's a pandemic, right?  We know that it could be, but we don't know how it [inaudible] the whole system.  And again, the culture thing; a culture is something that exists in a collection of people, and Michael may talk about some of that later, but not in an individual.  

 

And then functional emergence; this is one, I think, that’s sort of really intriguing.  When you think about individual behaviors, protocols and institutions, monitoring devices, those sort of things, we create artifacts, we create behaviors, we create institutions and we throw them out in the world, right?  And we're not quite sure what they're going to do, and they could take on other functionalities that we didn't anticipate.  So some of these might produce early warning signs, they could produce disease firewalls, they could produce productions in health disparities.  Certain things that exist out there could take on emergent functionalities that we didn't anticipate, right, for good, for better, or for worse.  

 

I'm just going to close with, then, two quick questions.  One is, whenever we write down rules or laws or establish standard operating procedures, when we create incentives within an organization or in a society by changing tax codes or changing what you can put in your health care account, we can never quite be sure what's going to emerge.  One of the things that I think that -- one reason I, Carl and Josh and Rob and Michael to some extent are failed economists in a way; we’ve sort of left the rational economist world -- is that there, when we teach economics, we tend to think of it in terms of supply and demand.  We talk about there being an equilibrium; you talk about being able to predict the equilibrium and tell how the equilibrium is going to change.  

 

Once you sort of accept the complex systems view of things, you realize that, well it's often very difficult to figure out exactly what's going to emerge once you set something loose.  Like when the iPod was introduced, I don't think anyone was quite sure exactly what that was going to do to the entire music industry.  But it fundamentally changed the nature of how we buy music.  The second thing is when we see an outcome, we can never really be certain how or why it arose.  And this gets to David's question of Josh earlier: how do you know when you’ve got an explanation?  Well, again, I think that's very difficult to figure out.  

 

Let me give a couple of examples of each.  So, the first one is, what emerges?  And Carl talked about this; when you say we're going to put democracy in Iraq, or we're going to put markets in the former Soviet Union, it’s not quite so simple to say, “Oh, it's going to look exactly like, you know, Des Moines three months from now.”  That's not going to happen.  Or if we have a single employer health care plan, free health clinics, if we do disease screening, if we impose new dietary guidelines, if we have new wealth redistribution policies; any one of these things, if we go into society, go into an economy, go into a political system and change one of these things, in a health care system, we can never really be sure exactly what's going to emerge.  And if someone tells you, “I know exactly what's going to emerge,” they’re probably wrong, right?

 

The second is, when you ask, “Why did it emerge?  Why do we have this obesity epidemic?  Why are there so many health disparities?  Why do we have income inequality?  What's causing this massive growth in diabetes?”  Again, I think these are all emergent phenomena, and I think it's very difficult to figure out in some sense why did it emerge?  But one reason why we want to do complex systems modeling, and I'm going to make two points; the first point is just to reiterate Josh's point, is that we all implicitly model.  Once we draw boxes with arrows, or once we tell a narrative with some sort of metaphor, we think, “This is like this;” in some sense we're constructing a model.  

 

But we're constructing a model that we’re not necessarily exposing to all the rigors of science.  In a sense we're not asking to fit parameters, we're not asking to make assumptions explicit, we're not asking to make sure that all the logic follows through clearly.  It’s in some sense a very loose model.  So, by forcing ourselves or asking ourselves to write something down in an agent-based platform or a mathematical platform, even a systems dynamic platform, at least what we are doing is we’re bringing some level of rigor to what's been in some sense just a metaphorical or a loose understanding of what we think is taking place.  

 

So that's the first point.  The second point is, I think it becomes extremely important that we have multiple models.  So, as Josh said, it would be great if we had lots of candidate explanations, but there's a danger if we all hone in on: here is our one model of this thing.  Because the fact is, models by definition have to be wrong, and models are going to miss things.  And if we go back to that thing about the collected error squared equals average error squared minus variance, one of the things we see is that you can think of those predictions as little models.  And if we want to collectively try to understand things, what we want to do is we want to have in some sense a suite or an ensemble of different models, each one making different assumptions, each one having their own idiosyncratic causalities and connections between them, because by having a rich variety of models, what we’re likely to do is do two things.  

 

One is we're likely to constantly keep challenging assumptions in the core model, which Josh talked about, and the other thing is, since no one model could contain everything -- if it did it would be too complicated.  By having a collection of models we also get this advantage; that we sort of get a fullness.  We have almost every variable we want, so we get the coverage that we'd like to get.  So one thing that I think -- there is this real tendency when you see the models like Josh has, is to think, “Boy, I'd really like to throw everything in there. I think these 40 things matter, so I want to construct a model with all 40 things in it.”  I think that's probably not going to work, and Scott de Marchi has a wonderful book where he talks about this curse of dimensionality, with respect to that.  

 

I think what works better in some sense is to construct 20 or 30 models, each one that has five or ten things in it, and ask which ones are usable.  And what you hopefully will get is some subset of those things that are actually useful.  And through that, what we can then try and do is get at these bigger questions of, what is likely to emerge?  And when we see something that has emerged, try and unpack why exactly is it that it did emerge.  Thank you very much.

[applause]

 

Male Speaker:

Thank you, Scott.  That was an immensely lucid talk.  We are going to do the same as we did this morning; we're going to have four speakers, and then we'll have questions for everybody at the end.  So, our next talk is by Dr. Michael Macy.  Michael Macy is a Goldwin Smith Professor of Sociology at Cornell.  He's written extensively related to this topic, but just reading a little bit from his bio, he has written a lot about the spread of self-destructive behaviors, polarization of opinion, and he has pioneered the use of agent-based models in sociology, social influence, learning, and network evolution.  Dr. Macy?

Dr. Michael Macy:

Thank you very much.  My talk today actually is not going to be the view from sociology, and the reason, actually, has to do with emergence.  Because no doubt there is -- without any question, there is a view of this field from sociology.  But as a member of that population, I have no idea what it is.  So, the talk is actually going to be the view from a sociologist.  So I'm actually saying the view from social science, so that I don't have to pin this down to sociology.  

 

And then I added the title, “Germs, bugs, and memes.”  And just to give you a little preview, I want to introduce a meme theory of disease to suggest that beyond social epidemiology, there is the possibility that, in fact, diseases are caused by cultural and social phenomena; memes, not just germs.  But these memes don't operate just like germs, and I want to talk a little bit about some of the important differences.  

 

Another important point I want to make is about groups and individuals, and I think this is really a recurrent theme in the talk so far.  Groups do not smoke; they don't get cancer, they don't get heart disease.  If you hear somebody say -- talking about a group that smokes, you might just politely ask them, "So, where in the group are the lungs located?"  And another point I want to get at is influence -- that we influence one another in response to the local influences we receive; emphasis on local.  

 

So, to begin -- so, the germs we all know about and the view from life science we focus on a pathogenic string of code that can -- that has some strategy for propagation.  So, for example, use a carrier, don't kill the host too quickly, and make the host sneeze, cough to help spread the pathogen.  

 

Now, to get across the idea that it’s not just germs, let’s go from germs to bugs.  In this case I'm talking about computers.  So now we know we're not dealing with biological phenomena.  So, from computer science we have the idea of this string of computer code, which is self-propagating and has some strategies that are not all that different from germs.  I mean, you use a carrier like e-mail, and don't completely disable the computer too quickly at least, and then make the computer e-mail everybody in the address list, and then it can spread the virus.  

 

So, now we're beyond biology, so now let's keep going.  And we get to memes, a term introduced by Richard Dawkins.  And here we get the idea that okay, now we have a string of cultural code also capable of self-propagation.  And the question then is, can memes cause disease?  And if so, what strategies do memes use for spreading these diseases, and how does the topology of a network, the shape of network structure, affect the spread of memetic contagions?  

 

So, just to give you some examples of memes, Dawkins’ favorite example, many of you probably know, is religion, which is a very clever meme that convinces people that they really better believe this, and moreover, tell other people about it.  And then we see fads all over the place such as iPods.  Jokes are a good example, because the joke has learned how to not only make you laugh when you hear it, but to make you want to tell other people.  So, the thing spreads really well.  

 

And then there are naked emperor memes.  So we all know the story from Anderson of the spread of this claim.  People don't privately believe it, but they claim that they can see the emperor's clothes.  And then there are some other examples of these naked emperors, [unintelligible] gives the example of portraits of despots in people's living rooms.  Or more familiar, perhaps: boys who cheer for the schoolyard bully because they're afraid of being the next victim.  

 

So, now, the question is: can memes also cause disease?  So, for example, eating disorders, which in a book by Gordon -- he calls it an epidemic.  And I think we could go beyond just the standard definitions to think about obesity disorders as well.  Are there memes involved in the spread of these disorders, or teen smoking?  Binge drinking in college, where studies have shown that, for example, fraternity members privately express real discomfort at excess drinking.  And yet, when they're in the fraternity hanging out with their pals they not only drink, but they celebrate drinking as a kind of culture of intoxication.  

 

Another example: honor killings, where people kill a family member in order to restore the honor of a family.  Witch hunts -- so the example that Josh gave this morning, I would suggest that even when there's just the fear component, and no germ, that it's still a disease which actually can cause death.  

 

Homophobic violence -- studies have shown that males who are insecure about their masculinity are more prone to engage in homophobic violence, as a way of affirming their masculinity, and not that different from the schoolyard bully story.  Ethnic cleansing, sectarian violence, again, another example of where -- not so different, perhaps, from honor killings, where there's an epidemic of escalating violence between groups, where each killing increases the probability that another will occur.  

 

And then two examples that I’m going to talk about in a little more detail: foot binding in China and female genital cutting in sub-Saharan Africa.  So with foot binding, here we have a disease which is extremely painful for young women and crippling for life.  It originated over 1000 years ago in the Han Dynasty, and then it spread down the social hierarchy because it became a precondition for upwardly mobile marriages.  And here's -- just to give you some evidence of the effect of this meme.  Here's an example of what the meme can do when it attacks the feet; it is a crippling disease.  

 

And we've actually found the meme.  This is the -- so, here is the meme that causes this, this aphorism: “If you love your son, don't go easy on his studies, if you love your daughter, don't go easy on her foot binding.”  And because foot binding was related to your prospects for marriage and your social position, then there's this social pressure to engage in the activity, the more people who do it.  So, when people are binding their feet, they are signaling their agreement with this norm, which in turn places pressure on their neighbors to conform as well.  

 

So, this norm or this practice persisted for quite a long time and yet, remarkably, it was eliminated in a single generation.  And the question is, how was this done?  How could this happen so fast?  And the top down view would be to say, “Well it has to have been because the government outlawed it.”  But in fact, on an important study, Gerald Mackey showed that in fact it really happened from the bottom up, not from the top down.  And indeed, the strategy that worked is very closely related to the meme itself, to that aphorism that I showed you, and it's not so different from what we try to do with mass inoculation.  

 

People formed anti foot binding societies, and the members pledged in these societies; they signed a contract that they would do two things.  First, they would not bind their daughters' feet, and perhaps equally important, they would not allow their sons to marry those who did.  And this also spread as a meme.  And it, in effect, inoculated the population from the social pressure to conform to this thousand-year-old norm, and in one generation it disappeared.  

 

Another example: female circumcision in Africa.  Again, it originated a long time ago; again, closely related to marriage prospects.  If anything it's more painful and dangerous than foot binding.  And it spread very rapidly. It now affects about 130 million women, and it's been difficult to eradicate.  But there is real progress being made.  And indeed, people have studied the foot binding case to try to better understand how do you combat the spread of this disease, and how to reverse it.  

 

And interestingly, the disease persists despite the fact that surveys show that again, like the college drinking example, privately, people oppose this; not just women, who are the victims, but men oppose it.  In fact, men oppose it at a higher rate than women.  There is opposition by clerics, so this is not a case of something imposed from the top down, and it's illegal in many locations where it nevertheless persists.  And the reason it exists is social pressure: it's peer-to-peer.  And the pressure is related to marriage prospects, and also pressure to conform to traditions, back to one's roots and affirming the value of those traditions.  The pressure comes not only from men, but also from women, and across generations.  So there's a lot of evidence that the pressure on a girl would come from other girls her own age.  

 

So, these are examples of what I believe are usefully thought of as memetic diseases, diseases that in some cases look like polio, but are spread by a meme, and not by a germ.  And so it's useful from this standpoint to better understand how memes operate.  So, it turns out it's not, I think, that complicated.  There are some basic rules of memetic propagation.  One is the law of influence, which is simply that when we interact with people, we tend to become more similar to them than we were before the interaction.  Or, if we dislike them, we may differentiate.  

 

So, for example, when I say, “What do we mean by influence?” there's a tendency to think it only means that you become -- that you do what I want, or you become more like me.  But in fact, if you don't like me, you may actually do the opposite of what I want, or to be as different from me as you can, which we would have for -- find, for example, in generational interactions, in some cases, or across ethnic lines.  So it can operate either as differentiation or as becoming more similar.  

 

And then, couple this with a law that runs in the other direction, called the law of attraction, originated by a social psychologist, Byrne, and it says that we are attracted to those who are more similar to ourselves, and we respond negatively and divisively, xenophobically, to those who are different.  And this law of attraction is sometimes called homophily, or heavy in learning, and it is just simply the idea that birds of a feather flock together.  We're more likely to interact with people who speak our language, understand our customs, or just simply inspire trust because they look like us, they have the same beliefs and religion.

 

So, here we get these two cycles operating, where similarity is promoting interaction, interaction is increasing similarity, and on the negative side, dissimilarity promoting xenophobia, xenophobia promoting differentiation, and then greater dissimilarity.  

 

So, now I want to build on these ideas to suggest, where does all this take us in terms of how we understand diseases that involve the propagation of pathogenic memes?  So, let's first look at what it is not.  This is the more classic -- I think this might actually be a more likely sociological view.  And in this one we would have the evil liquor industry and their buddies in the advertising industry sending out messages that show that it's cool to drink, you'll have more friends if you drink, it makes you more popular in social status.  And the drinkers hear these messages and you get drinking.  It's a very top down view, motivated by the profit system, and yes, I think it's fairly straightforward.  

 

But memetic theory is focused on peer-to-peer influence9 and interaction, and it's a very nonlinear model.  And the model is difficult, but I'm going to break it down starting with the simplest representation.  It's important to remember this is a simplification; things are going to get a lot more difficult when we get beyond this.  So, let's take a simple case of just three actors.  And the reds mean they like, the blues mean they dislike, and this is a network that contains not only people, but also practices or memes, and in this case there’s a drinking meme.  

 

And in this particular case, what we have is that Adam and Connie like each other, Adam and Betty like each other, but Connie and Betty don't like each other.  And Adam and Betty like to drink; Connie doesn't drink.  And here we have a balanced triad, and it's easy to tell when they’re balanced; just multiply the signs together and make sure it comes out positive.  So, there's three positives, that's balanced; here's two negatives and a positive, that's balanced.  Here's an imbalanced triad of two positives and a negative; here's another imbalanced triad.  

 

And so now, how are we going to balance the system in order to reduce the dissonance?  For example, you have two friends, and you like both of them, but they don't like each other.  And anyone who has experienced that knows there's tension, or in the language of this modeling tradition, there's energy in that system, and that there is, therefore, going to be a tendency to resolve that dissonance by changing something.  It doesn't have to just be that those two friends come to like each other.  It could also be that you come to dislike one of the two friends.  

 

So, what happens here?  Well, let's suppose that Connie refuses to drink, and instead, she and Adam fall apart.  So now, when that happens, all the relations are balanced.  So it's a very simple, easy way to balance the system: just change that one relation.  The only problem is that Connie is now socially isolated.  So now suppose instead that Connie conforms, and she switches over to drinking.  So now, this balances the relation with Adam, because we have the three positives there, but not the relation with Betty; that's still imbalanced.  In fact, it was balanced before, but Connie's change has actually caused that triad to become imbalanced.  But now she could change her relationship with Betty, and now all the relations are balanced end everyone drinks.  

 

So, now we can make this a little more complicated; let’s add a fourth actor.  And we now have two males and two females.  And let's assume that this is a heterosexual system in which males do not mate, and females do not mate or marry, and that it's bipartite in the sense that the ties can only be between male and females.  And then we’re going to add into this -- actually making it a tripartite graph -- a practice, in this case, of foot binding as a precondition for accepting one’s partner in marriage.  We've also added the complication that we now have what are called directed ties.  

 

So, now, Adam might like Connie, but Connie doesn't like Adam.  So you see up here the arrows running in different directions with the different colors.  So, now this makes things a bit more complicated than before.  And so now we can say given this configuration, how would we predict this system would evolve as the dissonances, the imbalanced structures resolve themselves?  And we can still make it even more complicated by adding additional memes, or additional practices, so that it's not only beliefs about foot binding, but about whether or not girls should get an education.  

 

And so, things start to get very complicated at this point in terms of trying to understand how this system will resolve itself.  And indeed, as we add more and more people, and we add more and more dimensions of the state space, of the attribute space, we might wonder what's going to happen, and it's going to be difficult to figure that out analytically.  But we can model this with a heavy in learning model, which is -- basically it's a Hopfield network, not that different from Ising models in physics, Potts models, there's a whole class of models that resemble one another very closely.  

 

But here's this particular version.  And we simply let the nodes of the network have positive or negative states on some number of dimensions.  So you can be for or against, -- if you will -- some practice.  And the nodes can also have positive or negative ties toward one another.  And we can make those ties have variable weights, so that you can have a strong or a weak tie to someone.  And in this model, then, the similarity between actors will depend on their relations, because depending on who you're tied to and the weights on those, you'll be influenced to adopt the states that they have.  

 

So, if you have a positive weight, that's going to cause you to acquire the state of the partner, or the neighbor to whom you have the positive tie.  Negative weights, it will be the opposite effect; the tendency to inhibit your acquisition of that state; that is, you would be less likely to adopt it.  And so then we just simply say that for any node in the network, the influence on them to adopt any given state -- in other words, to become infected by the meme -- is the weighted average of the states of their neighbors.  

 

And then the relations depend on similarities, so this is the other cycle.  And so we have weights between the nodes that are simply a function of the level of agreement across all of the possible states in the state space.  So there could be just one issue, if you will, do we believe in -- do we like to listen to a certain type of music?  And then there is some learning rate, and then given that, we can compute the weights on each of the relations.  So the question is, what will happen as we increase the number of actors?  We had three, and then we had four; suppose we put in hundreds of actors.  And what happens if we increase the size of the state space -- we increase the number of dimensions on which people might agree or disagree, be similar or dissimilar?  What will happen to the dynamics at the population level?  

 

And the result is very interesting: it's highly nonlinear.  So here, what we have on this graph: on one axis we have what's happening as we increase the population size.  So, n is getting bigger, we're adding more and more nodes.  And here we're increasing the size of the state space -- in effect, we're adding more memes, or we're adding more of anything, anything that can differentiate people.  It doesn't have to be as simple as a meme, it could be even demographic attributes that people don't have any ability to vary, or don't vary as easily.  

 

And so, what we find here is this very nonlinear effect of an increase in the number of salient dimensions.  And what we find with the population size is a linear effect on the number of groups.  Now, when we say stable subgroups, you can think of these as cultural profiles, if you will; combinations of all possible states that you could have across that number of dimensions.  

 

So, pretty straightforward results that we get here; the first thing that we see from that graph is there's this effect of group size, and that there's a tendency toward polarization.  So, if we look here, you'll see that over most of this space, there are very few stable subgroups.  And if you think of this ridge here, these are healthy groups, or healthy societies, in the sense that they have pluriformity and diversity.  So, going back to Scott’s talk, here we have difference.  Here we have variety, diversity.  You see lots of different cultural profiles.  You’re going to see a lot of heterogeneity.  Here you’re seeing polarization, so it’s -- they’re people of two different groups.  Red states and blue states, quite literally, and that’s most of this area.  

So what we find then is that we have this tendency toward polarization over most of the state space.  And when I say polarization, I don’t just mean that people are taking extreme position, because in this simplified version, everything is binary.  What makes it polarized is that I can predict your position on gun control by knowing your position on gay marriage, which presumably that shouldn’t be possible, but in fact, we actually can do that.  And so the question is why did these dimensions tend to become correlated, and that’s what we’re seeing in this model, the correlations forming.  And they’re not forming up on that ridge.  They’re forming down on the floor of that graph.  

And so we also find that in sparse populations with small end that there’s a larger area in which you get this polarization, which means then that there’s going to be a greater risk of polarization and a loss of diversity and a loss of tolerance of diversity in sparse populations and in small groups as one might find, for example, in rural populations or academic departments, which may explain why academic departments often get rifted into two groups that don’t speak to each other, whereas urban populations, which are larger, are more tolerant of diversity.  

And now we can ask, “Okay, so now that’s increasing the size of the populations, but what happens if we broaden people’s horizons?”  That is to say, we introduce more dimensions.  Now, these are binary dimensions, just to keep things simple, so we know in a very straightforward way that the number of possible profiles is just going to be two to the number of dimensions.  So for example, if we have one dimension, then you can get two profiles; two you’re going to get four; three you’re going to get eight; four you’re going to get 16.  We’re just going here 2D, five you’re going to get 32.  Everything so far, just what we would predict.  But then we go to six and it doesn’t keep going up.  It stays about 32.  Then we go to seven, now it’s going back down again.  It drops down to 24, then it drops really fast down to four and then anything above nine, any number you want above nine, it’s going to go down to two, back down to two.  

So what happened here?  So as we increase the size of the state space, as we add more dimensions, holding constant the population size, that state space becomes increasingly sparse and so the probability that there’s somebody who shares your profile goes down, and the more people who do not have anyone sharing their profile, that’s more people who don’t have the anchoring effect of a neighbor like themselves to hold them there.  And so what happens in these networks, these Hebbian learning networks, is that as you increase the size of the population and reduce the size of the state space, you increase the density.  You have a high probability that there will be quite a few people with your exact profile and that’s going to lock you in even when you have dissonance.  

So even when you are a member of an imbalanced triad and you sort of want to resolve it, you won’t do it because in order -- because it’s a Nash equilibrium.  Where you are, you’re actually better off than making any changes.  So if you -- if Connie decides she doesn’t want to be friends with Adam anymore, okay, that will fix that triad but it’s going to mess up the triad with Betty.  So the system locks in with -- at a high-energy equilibrium and those high-energy equilibria are, in effect, healthy in the sense that it allows for diversity.  It’s that ridge that you saw in the graph.  

So, so far, I’ve been talking about means that are just sort of pure conformity means.  There’s no enforcement and these can generate all kinds of conventions, which then become a Nash equilibrium.  But they’re often -- they can often be quite fragile, so the classic example here in the Anderson story, a child laughs at the emperor and it breaks the spell.  It just takes one child doing that to break the spell.  So these conformity means, they could be very stable but I think they’re often pretty fragile, and yet when we look around in the social world, we often find these practices lasting for a thousand years or more, so they’re clearly not fragile.  

So how do we explain that extraordinary robustness and staying power?  One possibility is that these means are really clever and they’ve learned not only how to get people to follow the mean and to let other people see it, but to actually pressure them, to enforce on them the requirement to also adopt.  And there are lots of examples.  I think honor codes are a good one, which say that if you don’t enforce, you’re just as guilty as the person who cheated.  If you do not kill the daughter who has violated sexual regulations regarding virginity, if you do not kill her, then you’re -- your entire family remains disgraced and you can only restore the honor of your family if you kill her.  And so these self-enforcing means are extremely dangerous and I want to look more closely at some of these.  

So let’s look at honor codes, and the idea in honor codes is that there’s collective responsibility, everybody has got to not only obey the honor system, they have to enforce it on others.  And what you see in these systems is the shunning of violators and even the killing of family members.  And in these systems, it’s often the case that those who do not enforce are the worst of all.  

And I actually first learned about this in an immediate way from having adolescent kids who taught me about posers.  Do you know about posers?  So there’s one thing that it turns out is worst than a deviant, and that’s a poser.  And a poser is -- so a poser is someone who complies with the norm, but they do it for the wrong reason.  It’s not enough to just do the right thing.  You have to do it for the right reason.  If you do it for popularity to gain approval and not because you really want to pierce your tongue, you’re a poser.  And so if you’re an adolescent and you’re worried more than anything else about being shunned and regarded as an outcast, then you know that you’re going -- you’re piercing your tongue, you know that that nose ring is no fun every time you get a cold.  And you really don’t want to have something through your tongue, and so -- but you’re going to not only do it, but you’re going to -- and you’re going to -- and you know privately you’re doing it for social approval.  

You also know that people better not know that you’re doing it for social approval.  So they have to be convinced that you’re doing it because you really want that body jewelry or that tattoo or whatever.  And you worry that they are going to be able to see through, to suspect your motives, so what better way to prove your sincerity than to pressure others, to celebrate publicly in a way that communicates to others that your approval of them as a person hinges upon their compliance with the norm?  So here you get witch hunts, and of course, the classic story of witch hunt is Arthur Miller’s The Crucible, and from Miller, naturally the best proof of the sincerity of your confession was your naming others.  And indeed, when people named others, they weren’t executed.  It was the people who refused to name others who got into trouble.  

And then another version of the same thing, the secret of success is sincerity.  If you can fake that, you’ve got it made.  Enforcement, great way to do it.  So we get these self-enforcing means, and we see examples of them with so-called fanaticism of the new recruit.  Snobbery is a good example by people who -- you know, they don’t really like to spend all their time listening to German opera, but you’d never know it by the way the snooty attitude they have toward those who like to listen to rock and roll.  And then more serious examples, closet deviants who then persecute others in order to avoid suspicion, and again, the example from Prentiss & Miller of college drinking rituals, honor killings, the case of female genital cutting, the marriage rules to prove your virginity on marriage.  

But now what I’d like to finish up with is to talk about differences, very important differences between memes [spelled phonetically] and germs.  So far I’ve really been emphasizing the ways in which there are these social germs, memes, that can cause very serious diseases, can be very hard to stop them from spreading, and once they do spread, very hard to eradicate.  I want to look now at the differences.  So germs have a threshold of one at the lower limit for propagation through social contact.  Because, you know, you may not acquire the disease on any given contact with an infected agent.  But either you do or you don’t, but you don’t have to get a confirmatory infection from a second person.  You get the rhinovirus from your kid.  Either you get the cold or you don’t.  You don’t have to get a confirmatory rhinovirus from the kids from someone next door.  So you may need several exposures to get sick, you don’t need several sources.  

Memes are what I call complex contagions, and in some work that I did with the graduate student Damon Sotalol [spelled phonetically], who’s now a Robert Wood Johnson Fellow at Harvard, we looked at how this difference is crucial for the effects of network topology on the propagation of the contagion.  So these complex contagions refers to the fact that the threshold is greater than the theoretical lower limit.  It’s anything above one.  

So as soon as you have to have mutual -- social reinforcement, we’re talking about you need two people, you need three, four, however many before you adopt.  And lots of examples.  So the first time you hear an urban legend like Einstein flunked algebra, which he did not, though lots of people believe it, the first time you hear it you don’t believe it, but when you’ve hear it from three or four different people who don’t know each other, you figure it must be true.  New technologies are often not cost effective until lost of people adopt them.  So e-mail is not really good when you’re the very first person who has e-mail.  Who are you going to write to?  And then, of course, with adolescent behaviors, something that seemed weird becomes cool if enough people do it.  

And then on the other side, the same applies to benevolent and even therapeutic memes that we might deliberately launch to try to combat a disease.  So if we’re making a public health recommendation that challenges tradition, the legitimacy of compliance with those recommendations is going to depend on how many of my neighbors are doing it.  So just hearing the information is not sufficient.  Information itself spreads the same way as biological pathogens.  It’s a simple contagion.  You hear the score of the soccer match, you know it.  You don’t have to ask somebody else what’s the score.  You hear about practices that are -- that will allow you to have safe water.  Okay, you heard -- you know -- you have the information.  

Here’s the question: are you going to act on the information, are you going to tell other people about it, are you going to advocate it to others?  And that’s where the thresholds go up and the contagion goes from simple to complex, and now the question is how does the -- what are the implications of these higher thresholds?  And in fact, I think what we often find is that many of the studies of the spread of contagions are based on the spread of information and disease where the thresholds are at one at the theoretical lower limit, and we generalize from that to the spread of all kinds of other things.  So we might have a model of how the disease spreads, and we use that to figure out how the information spreads.  So far so good, and then generalize from that to how the behavior changes will spread.  That’s where we may be getting into trouble if complex contagions don’t spread the way simple contagions do.  

So we compared these.  And so a simple contagion, it just means you have this very low threshold for propagation through social contact.  You have to have one, and those contagions can spread through any topology, including random networks, doesn’t matter.  I mean, they’ll spread at different speeds depending on the topology, but they’ll spread over all topologies as long as there is a single component.  If there are multiple components, then it has to have -- there has to be a bridge to the other components.  But as thresholds increase, what we find is that propagation becomes either unlikely or much slower on scale-free networks, which is important because many social networks are, in fact, scale-free.  It also will not spread on sparse -- will not spread on a random graph, whereas simple contagions will.  

And perhaps most importantly, small world networks.  So small world networks are famous for the fact that they will allow information and disease to spread almost as fast on a highly clustered network as on a completely random network, which means that you can have high clustering and high connectedness at the same time.  That is true for the spread of simple contagions, but it is not true for the spread of complex contagions.  At least, it’s not true in exactly the same way.  There are cases, in fact, which we identify in which complex contagions actually not only spread on small world networks, they would actually spread faster on a small world network than on a random network.  And actually, for the spread of disease and information, what Watts and Strogers [spelled phonetically] and Newman and others have shown is that small world networks, the simple contagions can spread almost as fast as on a random network but not faster than on a random network.  

What we found is that there are certain cases in which complex contagions actually spread faster on a small world network than on a random network.  But importantly, they don’t spread as fast on a small world network as they do on a highly clustered network.  And indeed, the ideal network structures in many ways for the spread of complex contagions, for the spread of memes, are spatial networks.  And this is true for two reasons, one of which everybody knows, it’s well rehearsed in the literature, and that’s just close physical proximity.  Your neighbors are next door, you see them a lot, it’s not hard to communicate with them.  But there’s another property of spatial networks which has not received much attention, and that is that there are these overlapping neighborhoods; in effect the bridges between the clusters are not -- are wide and this allows for the social reinforcements that’s essential for the spread of a complex contagion.  

So let’s look at this more graphically.  Here we have what’s called a Moore neighborhood.  There are nine cells in the neighborhood, and all nine are infected with the color yellow, and here is a second neighborhood.  ‘A’ is the focal node of the yellow neighborhood, ‘B’ is the focal node of the second neighborhood, which overlaps with A’s neighborhood.  So they have three neighbors in common, all of whom are infected.  And so if we assume a threshold of three, that is to say ‘B’ has to see three yellows in order to become yellow, well, ‘B’ has got three yellow neighbors so ‘B’ now becomes yellow.  And now ‘C’ does and ‘D’, ‘E,’ and the thing is going to spread.  So there’s the spread of a complex contagion on a spatial network where a threshold was at three, not at one, through these overlaps between the neighborhoods.  

But now let’s ask -- suppose we make this a small world network and we randomize the network.  So here it is back where we were before, and we’re now going to identify things with yellow and with thatch.  So here the yellow thatch through common neighbors of ‘A’ and ‘B,’ and now we’re going to randomly rewire the network to create a small world network, and now what we’ve got -- we now have yellows that are now scattered about over here and the thatch are scattered about.  So now for the spread of a simple contagion, this is great because now the contagion can now spread out from all these multiple locations.  So it’s going to take off, it loves this.  

But a meme is in big trouble.  With a threshold of three, ‘B’ can no longer be infected with just a single shared neighbor with ‘A’, with the ‘A’ neighborhood.  So there you have this effective network topology on the spread of a memetic disease, in fact, of any complex contagion.  And then when we ran a -- here are some results.  So this was for the spread of a norm that people privately opposed but they enforced it in order to affirm the sincerity of their compliance.  And what we found is that as we randomize the network, we reached a -- we see a phase transition, we observed this phase transition, a transformation of the social fabric where the thing just simply will not spread anymore at somewhere around ten percent of the edges being rewired.  

So to just wind things up here, here is some take home points.  First, most important, my main message here today, view from social science, infectious disease can be caused by memes as well as germs.  So I’m not talking here about social epidemiology in the sense of what are the social conditions that allow biological pathogens to spread, I’m talking about how do you get -- how do you get lung cancer to spread?  So you think of lung cancer, well, you know, it’s not carried by germs, at least as far as we know, but it is carried by smoking.  

So the next point, watch out for the self-enforcing meme.  So if you’re becoming a memetic epidemiologist, these are the really nasty ones.  And you find these in these situations where there are posers, where people are under this pressure to affirm their compliance by pressuring others, and you have to be careful here because it’s going to look to all the world, including you as the observer, people really believe this stuff.  I mean, they’re enforcing it.  Well, that may actually be a telltale sign that privately people are very skeptical.  

And then public health implications, the first is information really may not do much good.  Second is with the foot binding case, with female genital cutting in Africa, an anti-meme looks very promising.  Something that creates a counter veiling epidemic, if you will, a counter veiling pressure that undermines the susceptibility to the disease causing meme.  So public meetings are very important so that everybody has common knowledge of other peoples’ true beliefs all at the same time to get that critical mass that overcomes the pressure.  Contracts, anti-food binding societies that were used in China, become very important for showing that the pressure to find a husband and the fear of being un-marriageable no longer exists.  

And then finally, these initiatives should target spatial networks.  That’s the -- if you’re not just trying to get information out.  If you’re trying to get information out, random networks are great, small worlds great.  If you’re trying to change behavior, you need these overlapping neighborhoods, residential neighborhoods, dormitories.  Go for the dormitories, don’t go for the classrooms.  Go for the residential neighborhoods, don’t go for the workplaces.  And that’s it.  Thank you very much.

[applause]

Male Speaker:

Thanks.  That was great as well.  Let’s take a short break and we’ll come back at 3:15.

[low audio]

Male Speaker:

Okay, let’s get back.  Our -- we have two speakers this afternoon.  The first speaker is Dr. Rob Axtell, who has written extensively in the field of complex systems, so I won’t describe what he’s done.  But just by way of introduction, he is newly at the Center for Social Complexity at George Mason University, and he’s going to talk about the importance of dynamics.  Dr. Axtell?

Dr. Rob Axtell:

Thank you very much.  Like many of the speakers today, I was given my title and I will say that I have some minor trepidation about it, and that’s that I fear that most of us, most people, most researchers, have quite good instincts about dynamics.  That is, we can imagine how it could be important, how it’s going to manifest itself in many important ways in the real world.  It’s only those few of us who have actually taken too much mathematics, and in fact, maybe those of us who have taken mathematical economics who need to be apprised of the true importance of dynamics.  So I apologize in advance if you’re not in that crowd because you may already about how much dynamics matter and you may not need to hear about it from me.  

I’m going to -- what I intend to do in the next short time is just to basically give an overview of the way that the dynamical models have reasserted themselves into the research community with which I’m affiliated.  Primarily, the complex systems and complex social sciences research community, and particularly by way of example, I will point out the ways in which dynamics are sometimes not used in these fields, or in particularly in the conventional social science fields, and I’ll point that out by way of critique, in essence.  But all the examples I’ll give today are basically going to be examples where we’ll assert the importance of dynamics as the title suggests.  

Okay, so I’m going to first start out by appealing to a slide that’s very similar to one that Scott gave earlier, just to say that there are -- when it comes to health, of course, there are many different scales that are active.  There are biophysical scales, low level scales, rising up to societal scales as the previous talk described.  And then there are various kinds of economic scales.  In fact, Josh gave a description of a fineman [spelled phonetically] -- they had a fineman in court earlier today and fineman once described, said the only place where you find such large numbers as you find in astrophysics is in the US budget.  Clearly, the size of the US health budget is an astronomical number.  

And so we have many different scales operational and the kinds of concerns that you guys deal with on a regular basis, the kinds of models that I build, and we’re going to look at the ways in which dynamics have manifested themselves either at certain scales or across certain scales.  In particular, and there’s only going to be a couple of slides with any mathematics here, but there are going to be a couple.  I would like everybody to think about multi-scale systems in the following way.  Imagine that there is, in fact, some microscopic dynamic written here as X of T, by which we know a lot.  So let’s say that we actually know how a system in current state X marches forward to reinstate X at time T + 1, and in some exact dynamics known for the microscopic world.  

So imagine we’re going to understand how the microscopic world works.  Now, of course, that’s an idealization; we never know exactly how the microscopic world works.  But I want to think about -- I want you to think about how would we -- how might we model this world in some aggregate way, that it is very similar to the way Scott earlier today spoke about emergence.  It is some higher-level system where we’re going to say there’s an aggregation operator that aggregates the microscopic world up to some higher-level system of states.  So there’s some aggregate state Y of T that marches forward in time to Y of T + 1 through it’s own set of dynamics.  

Now, I’ll come back to this and we’ll explore a little bit of what it means mathematically in a bit.  But for now, suffice it to say that I think that many of the systems that we care about are, in fact, of this multi-level structure.  And we’re going to conceive of the dynamics happening on multiple levels.  So this is going to be the individual level, there’s going to be the social level.  There could be the biophysical level and the individual level.  There’s going to be multiple levels in which we need to think about dynamics because it may be the case that the kinds of dynamics we care about are going to be happening at one level and not at a different level.  And we’re going to care about how we can translate the dynamics from one level to another level.  

And I think that it turns out that there are going to be many examples of social systems of social models where we’re going to have many levels operational.  Maybe not so many as on the previous slide where we had maybe a dozen levels, but it turns out for practical purposes, we rarely work with more than two models -- two levels.  I will show an example today where we have three levels, but it’s rare to have more than that, although I am aware of a couple with maybe four models -- four levels.  But not many more, so we’ll talk today exclusively about models with two different kinds of levels.  Okay.

And this brings immediately up the notion of the difference between an equilibrium configuration versus a steady state configuration where I want you guys to think about the equilibrium being the usual notion of non-dynamics and steady state could imply dynamics either yes or no.  So think about the fact that certain kinds of equilibrium are what are termed, in mathematics anyway, fixed points in some kind of state space.  That is, there’s a mechanical structure like this building.  This building happily is in a steady state -- or is in fixed point equilibrium right now.  It’s not -- the parts are not moving much vis-a-vis each other.  And so in some mechanical equilibrium, for example, we have this conception of a static equilibrium, and that is a conventional notion that we’ll oftentimes encounter in various domains from mechanics to social systems.  

But there are other kinds of notions where we can think about fixed points.  Now, this is technically a bit technical for this audience perhaps, but fixed points in some kind of function space whereby what we mean is there can be motion at one level.  For example, imagine some type of chemical equilibrium.  Imagine the molecules in this room.  There is motion in the individual molecules in this room; however, I claim that the temperature is not changing very much.  So we can have a fixed point at some higher level; in this case, we have a thermodynamic equilibrium roughly in this room, even though all the molecules are moving roughly at the speed of sound.  So we can have equilibrium or at least a steady state at one level without having microscopic equilibrium.  For much of the comments that -- many of the comments that I’ll make today are going to hinge around this kind of dichotomy between microscopic dynamics, macroscopic stationary, at least, microscopic steady state. 

And just to rehearse what’s going to come many, many times subsequently here, steady  state behavior at a higher level, perpetual dynamics at a lower level.  But I think it’s fair to say we’re never going to look at static equilibrium anywhere in complex systems.  Now, there are places where static equilibria are reported to obtain -- for example, in social systems -- and I shall [unintelligible] against those today, systematically.  So I’m going to situate this discussion in a slide that is -- for those of you who have heard me speak recently, maybe this is getting a little bit of a little bit of a oldy and moldy slide here which I bring out to contrast complexity ideas versus non-complexity ideas.  

So in the post World War II environment, we think about many models, many mindsets as being static.  We had global information, centralized control; holdover from the war, perhaps.  We had homogeneous agents, typical agents representative of people.  All of macroeconomics today is built upon this metaphor, for example.  And there’s also an example of an algorithm; that is, as a function, we can write down -- we can have the computer -- code the computer to solve some problem, and that’s exactly what computers do.  Computers were invented in the post World War II era to solve mathematical equations.  I’m going to describe today the use of computers in the way you’ve seen earlier today, as in ways that it can be used other than to just solve equations.  

The simple notion of utility that had been mentioned many times today by those of us who are moving out of economics.  The decision theory was mentioned earlier today.  I‘m going to give a precise sense in which decision theory, I think, is part of the problem, not part of the solution.  So I think that today, now, what we really care about, the kinds of models we’re building, the kinds of questions we’re all involved in solving, has to do with -- they’re inherently dynamic problems for which there’s local information, things that are happening within networks.  There is no global control.  There’s only distributed operations.  People have some sense that they have distributed control.  If you’re a Federal Reserve Board governor, you have some modicum of control, but it’s only highly distributed, highly decentralized.  

There are, as Scott mentioned, and as his recent work has described, the importance of diversity cannot be overstated in today’s world and better understanding of that is important.  I’m going to eventually describe later in this talk that I think one notion which we can use to replace the conventional idea of an algorithm is that we’re going to have interacting software machines, interacting individuals, and then we’re going to use computers not to solve equations but to simulate these interactions.  

Finally, utility is replaced by actual data and how people behave.  It is a curiosity that there is a -- those of you who are not social scientists, there is an axiomatic theory of how people should behave.  It’s unfortunately falsified by empirical data.  It’s a curiosity though that today we call the results of those experiments, we call them anomalies.  The axiomatic theory is considered normal and the way people really behave are the anomalies.  But in fact, that terminology will hopefully be replaced and will recognize the way people really behave is what we should be modeling.  

Decision theory, it turns out, is just a special case of game theory, and I’ll talk a lot about game theory today.  You can think about decision theory as a game against nature.  Nature is potentially quite difficult to deal with.  Nature does not reveal her secrets easily, but she’s probably not strategic, in a sense trying to confound us and put us in our place.  So we can think about game theory as a strategic interaction with an opponent who is at least as sophisticated as we are, where decision theory is simply an interaction with an unknown opponent, and we’ll talk about the ways in which those things are different today.  

So, and just a little bit of background further, although we’ve heard lots of this today is that I’d like to frame the interaction between complexity, which we heard a lot about, with dynamics, which is my title in the following way; that is, complexity [unintelligible] systems, as Scott has well described, we focus on the adaptive part of this system, not merely the fact that it’s a bunch of interacting particles.  And we -- it’s a new way to think about a variety of fields.  The interactions between these components of the system can lead to higher order functionality.  That is, it could lead to emerging properties as we’ve heard about.  I think in a whole variety of fields today, what we see is that there are complexity-type models, CS models, increasingly important from [unintelligible] pile models in physics to large-scale neuronal models.  I’ve just, for example, heard a lot about this four million neuron model that runs on the IBM blue gene machine.  Artificial ant colonies in college, artificial financial markets, Jasmina will perhaps talk about them tomorrow.  

So there are a variety of ways in which complexity models manifest themselves across fields, in which I’ll tell you a lot about how the dynamics work in those models.  I think that all the models have the following features in common: there’s some distributed state in the system whose dynamics we’re going to study computationally, and although it’s not always said this way, the kinds of models that are used to describe -- used to -- that are built computationally have this agent based, individual based flavor, about which I’ll say more as we go along here.  And as we’ve heard about from Scott, the agent models typically from the bottom up, there emerges some high level structure and I’ll also give further examples of that today.  

So the quick [unintelligible] of my talk is going to be I’d like to talk about a couple of different levels of gross dynamics; that is, there’s some kind of social level of dynamics that is inter-individual level.  I’ll also talk about behavioral level that really involves, you know, just how do we actually represent human behavior.  I’m going to leave the --primarily I’m going to leave most of the discussion for intra-individual behavior, the biological level, to the speaker who follows me.  I’ll give some demos and I mean, I really want to -- I’d like to focus on, hopefully introduce to many of you, the idea that systems of interacting automata, systems of interacting agents, is in fact a novel way to do modeling.  It’s a novel way to even think about systems and it’s one around which we can -- which there is new work which we can use as foundational to base a whole science of complex systems around.  Implicit in this argument is going to be that existing mathematics is simply inadequate for handling the kinds of care -- kinds of problems we care about.  Okay?

So first the social level.  I’ll talk about game theory.  I want to talk about since [unintelligible] I’m going to talk about the great professor Holland.  Origin of dynamics, I’ll talk about some things associated with classic social problems, financial markets, [inaudible] information, getting a little bit to touch on public health problems, although that will not be the main topic.  So here goes.  Game theory of dynamics, the founding volume really in game theory is due to two authors by Neumann and Morgenstern, written during the war, or right -- published just after the war, World War II.  And there is -- you can find in that great volume, you can find the following incredible, really, mention of dynamics.  They say -- they’ve written this long book.  It’s going to found an entire field, it’s 600-700 pages long, and they say yet our theory is thoroughly static.  A dynamic theory would be questionably more complete and therefore preferable.  

Aesthetic theory deals only with equilibria, for the real dynamics, which investigates the precise motions usually far away from equilibria, require much deeper knowledge.  Yet they say even the kinds of analysis they want to do is so hard that they don’t believe we can even use conventional mathematics to make progress in game theory, suspected that in the preface they say here now.  Mathematical discoveries of the stature of the calculus will be needed in order to make progress in game theory.  Now this, of course, would ostensibly require it’s own Newton to make -- or [inaudible] to make progress.  So maybe [unintelligible] perhaps you can write this without worrying whether such discoveries will happen, but just assume they will.  

But I think that -- I’m essentially going to argue that over the last 50 years, we have not had such incredible progress in mathematics.  We’re still using basically the same devices that were available to these guys a generation and a half ago, two generations ago.  And that rather, and this is the great irony of this passage, Von Neumann, the architect of the modern computer, had in fact at his fingertips, potentially anyway, the, in fact, solution to this problem.  That is, in effect, it’s multi-agent systems, systems of interacting agent computer models that are the way to make decisive progress in this area.  

And so I’m going to -- first point to make is that the conventional program of game theory as we have it today revolves around the following claim, which is nowhere really made in game theory but is implicit in all the work of game theory.  And it says that when we observe some macroscopic regularity, this must arise from agent level equilibria, and this is what the Nash Equilibrium is.  Many of you have not studied game theory and many of you are not social scientists, but suffice it to say that if you have seen the movie A Beautiful Mind, you’ve heard about John Nash.  His basic -- his one and half page paper in P&S in 1951, which left Von Neumann quite non-plussed, but that’s an aside.  Since he showed that there always exists an agent level equilibria for any finite game.  Basically, for any game that you can write down, essentially there’s always going to be some Nash Equilibrium.  

But what’s implicit in that is that if we want to explain the social regularity, we’re going to have agent level equilibria, and I’m going to describe today many examples where I find that quite unsatisfactory.  I think from the point of view of public health models, that’s unsatisfactory.  For example, the Nash program then of game theory, really the Nash program on social science is to deduce agent level strategies as equilibria that correspond to empirical regularities, and we always know something like this exists but I essentially would like to argue that these results are only sufficient; they are not necessary.  In a sense that if we have Nash equilibria obtaining, then in effect, we’ll have a social regularity at the microscopic level.  But I’m going to give you many examples today where there is, in fact, I’m not going to claim whether the Nash Equilibrium exists.  I’m going to simply say that it’s never achieved.  Yet we have many satisfactory explanations of empirical patterns of behavior that don’t require agent level equilibria.  That is, we’re basically going to have agent level dis-equilibria.  

In fact, a somewhat different alternative program which I will not describe today, I’m going to essentially focus on this alternative program one, we’re going to look agent dis-equilibria.  A different program is that the Nash claim be necessary but not sufficient because it may be that from certain conditions, you cannot obtain certain level -- certain Nash equilibria.  That’s a different claim and I won’t focus on that, but it’s one which deserves to be investigated.  

Okay, so I have written here John Holland versus the game theorist.  Now, there is, in fact, a name associated with this game theorist, but because we’re being recorded and because I know this primarily is an urban legend, the terminology used by Mike Massey [spelled phonetically], so it may be that, in fact, this is -- I’ll get the name wrong if I actually put the name here.  But basically the way it works was as follows: there was a -- John Holland gave a talk in London many years ago, and he mentioned how in explaining certain kinds of algorithms, [unintelligible] algorithm other things, the game theorists in the audience said, “Look, all these dynamics are of no interest because the only kinds of social regularities who could ever imagine understanding or explaining would be ones which have Nash equilibria.”  

And Holland’s counter example is the following: Holland used a biological metaphor and he says, “Consider the rainforest.”  This is now paraphrasing.  “It’s constantly changing, populations are ebbing and flowing, arms races between species have arisen and are in full bloom, perpetual adaptation occurs and there’s no equilibrium at the agent level because it’s always in a state of flux.”  And then there subsequently happened a great debate on the subject in that room.  I think that it’s fare to say that for many of us who read the transcript of this debate, it’s Holland who has won the debate, but now I’m going to give examples to, I think, flesh this out a little bit.  

But I think this is -- from the early ‘90s, it’s quite -- Holland was pressured in arguing that we don’t need to have Nash equilibria to explain social regularities.  For example, now this would be an example which is far field of many of your areas, I’m sure, one which Jasmina will touch on perhaps tomorrow.  But simply an example of [unintelligible] financial market.  So there are these artificial stock markets in which we are going to have inside a computer little traders trading stuff around.  Typically they’re going to be trading one risky good, one riskless good, and then we’re going to look at how do the individual agents fare in such an environment?  How do things like prices evolve and emerge in such an environment?  

Well, in fact, it turns out that for the very first stock market, the first type that was every built in Santa Fe, there were basically two regimes discovered for the financial market, one in which there were lots of trade that happened.  Prices would change, fortunes were made, fortunes were lost.  But there’s another regime in which no trade happened and it turns out that that second regime, turned out had many of the properties of economic theory.  In fact, it was a regime in which everybody had exact expectations about how the world would unfold, nobody needed to trade anything because everybody was perfectly happy, there was no way to make any money in that world.  And that is what’s called a rational expectations equilibria, and was in the basic way you know you’re in one of those configurations that no trade happens.  

But in fact, for almost all configurations of the model otherwise, you get lots of trade happening.  And of course, on the New York Stock Exchange today, I have no idea what that market is actually doing, but I guarantee you there’s been a billion shares traded.  So I think the fact that we have trade going on would normally falsify the second mode empirically.  Rational expectations equilibria, but in fact, a Nobel Prizes were awarded for that also in the ‘80s, so we don’t have it falsified quite yet.  

The next generation market that was built basically is going to give support to this proposition that I’ve raised about having agent level dis-equilibrium.  Here’s how it goes.  We have a bunch of agents who are artificial neural networks.  Agents vary by time horizons, some are short time risers, some are longtime rising traders, and what LeBaron found in his artificial stock market in this particular version of it was that agents who are constantly adapting, constantly trying to make money from their peers in one of these competitive environments of the financial market, it was always the agents with short memory who could exploit agents with longer memory.  So if you were a buy and hold trader, basically you would be exploitable by a day trader, in essence.  

And -- but even for -- so if, in fact, the system is permitted to evolve, it evolves to everybody having very short memory and then what you find is that these agents are constantly trying to outwit each other.  They’re constantly trying to adapt.  They’re never settling down into any fixed behavior whatsoever.  In fact, it turns out that this model in which there is lots of trade going on, everybody has very short time horizon, does a very good job at empirically reproducing certain well known features of real financial markets.  

This is an example now where we have a bunch of agents, we simply give them the objective by saying, “Go out and make as much money as you can.”  They’re using neural network behavior in the sense that they’re saying -- they’re using past data about how the market behaved, forecast what the price could do in the future, and this never settles down into anything like a fixed point equilibria, anything like a Nash Equilibrium.  

Another example is going to be a model that I built and Scott referred to this earlier.  He foreshadowed, he guessed that I would show this figure.  A plot in which there’s going to be -- this is a distribution of firm sizes.  On a horizontal axis is the size of the firm, along the vertical axis is the frequency, which you find in firms of that size.  The straight line is roughly the empirical data; the curved line is the result of the model.  It’s a model in which at the microscopic level, we have gross regularity, we have a stationary state that arises in which there’s a fixed steady state distribution of firm sizes.  

But what I now intend to do is run this model, just very briefly, and show you guys how at the agent level there is, in fact, never anything like a fixed point that obtains.  So the red dots are individual agents who are running around.  I’m going to skip all the details, but they’re running around trying to figure out which group should they join.  If I run it ahead a little bit, every horizontal line here now is a group of agents.  So this would be a little firm here as well as here’s another firm.  A hole in the firm means somebody was there and someone left to go somewhere else.  The basic rules of this model are people look around and they say how well am I doing in my current firm?  Should I stay in my current firm or should I join a different firm?  Could I do better in a different firm or if all my options are quite poor regarding either my current firm or the other firms I’ve sampled, maybe I should go out and start up a new firm and be a singleton and have a little start up company.  Two examples.  

As you watch this thing go forward, what you find is agents perpetually adjust and adapt and the thing never settles down in anything like a fixed-point configuration where all the agents are happy at the agent level.  All the individuals are going to be in some kind of fixed collational [spelled phonetically] structure.  This is another example like the financial agent model -- financial market model where these perpetual adaptations with microscopic levels, and you may ask, “Does this model at all reflect the real world?”  Well, in the real world it turns out that the average job tenure is around two and half years.  There’s actually a huge turnover at the microscopic level of people changing jobs.  That has changed a little bit over the last generation but not that much, surprisingly not that much.  

Also you see that no firm, firms grow from left to right here.  Some firms get big and some firms die, all firms die eventually.  No firm lives forever.  Is that realistic?  Well, it turns out that if you look at even the largest firms in the US, there are about 10,000 publicly traded firms in the US.  About ten percent of them lose their autonomy every single year.  So imagine over a decade, in effect, about two-thirds of the US capital stock turns over.  There’s an incredible turnover in actual US firm structure and this model is getting at that.  But the main point to know is for our purposes simply that the dynamics are intrinsic in this model and there’s no way to approximate this as some kind of, you know, fixed point at the agent level.  That it’s even provable in this case that there exists a Nash Equilibrium and it’s dynamically unstable, and I won’t go into the details.  Okay.  

So and this is an example of where we have a stationary structure at the microscopic level but microscopic dynamics that never settle down to anything.  And there is a recent dissertation on this model that show that -- I’ve just shown you the macroscopic structure, I’ve shown you the mesoscopic structure.  Here now, this is actually intrafirm dynamics.  This is actually a recent dissertation explores what is a life cycle of firms in this model, how do agents fare as they kind of go through?  You notice, they just kind of -- over the -- here’s a firm that lived for around six years and it had experienced lots of different fluctuation and effort by the workers, utility and agent type in the model.  But I’ll just go quickly and come back to that if there are questions.  

A model of some of the more epidemiological focus, some of the more biological focus, health focus than what I’ve described so far are models of smoking.  And in particular, I would like to contrast conventional models, these conventional models by economist.  Conventional econometric models with agent based and other complexity informed models.  So for example, the conventional game theoretic formulation of smoking would be to say as follows, and I am aware that many of you, not econometricians, may find this so far removed from reality that it may look almost comical, but please hold your laughter.  

People who have a natural propensity to smoke would be the observed -- would be the conventional view, but it’s an unobservable feature.  Agents then, they don’t really talk or communicate; they simply self-segregate into smokers and non-smokers, and this forms a Nash Equilibrium.  So imagine that agents have some -- it might be that, for example, all the kids with purple hair end up being the ones who have some natural propensity to smoke because they engage in risky behavior or something.  And then they self-segregate and they become smokers, and this is a Nash Equilibrium.  Now you estimate what is the -- what are some of these unobservables through econometrics.

So the default assumption by an economist during competition would be the effect that peer pressure -- that peer effects is zero.  That’s the conventional in econometrics today.  However, contrast this with more of an interacting agent formulation, in which we’re going to say agents are embedded in some kind of social network.  Agents derive utility from social interactions and then the level of smoking behavior is endogenous to what those social interactions look like.  That is, it’s going to unfold over time as people commit [unintelligible] networks, as people -- as agents try smoking behavior randomly or not or for other reasons.  There’s going to be a dynamic level of smoking that obtains versus a fixed level, a fixed amount of Nash Equilibrium.  

So this is an example of where we have a model, which is intrinsic dynamics at the microscopic -- at the agent level versus kind of a static conception at the aggregate level.  Another model with some public health kind of application is there’s a graduate student with whom I’m working at George Mason who’s built a model, I’ll only summarize in one slide here, of the interaction of patients, doctors, and insurers in our kind of third party pair system that we have in our country.  And he’s built this nice agent-based model in which even though there can be, in fact, constant levels of, you know, income in the model, people can receive constant -- receive, more or less, average levels of care.  There are all kinds of microscopic dynamics that matter a lot in this model.  By simply writing down the sentence for each of these classes of agents, he’s been able to do a good job of looking at kind of -- what’s the long run evolution of the system look like.  And I’ll just summarize and say it doesn’t look too good.  

Back to the mathematics.  So I want to now kind of formulize what I’ve just shown you guys.  What I’ve shown you is that there are a bunch of models in which there are macroscopic regularities through our microscopic dynamics.  And here’s how we can think about that in the context of the previous terminology and notation that I introduced.  So imagine that there’s going to be some microscopic dynamics that are marching forward discreet time-wise like this.  So we have the current state as X and we know exactly how it goes forward like this, giving us X (T + 1).  Now, this is -- I’ve written this now as linear to make the thing as kind of simple as possible.  Linear dynamics, so F just multiplies by the state vector, we get this dynamical system.  There are some aggregate dynamics that look like this.  That is, imagine some linear aggregate dynamics that are going marching forward like this.  Y is a much smaller state space.  

Now, the aggregation operator just says, “I know how to aggregate the microscopic dynamics to the macroscopic ones.”  It is the same way, for example, you just saw a whole bunch of motions of individuals running around on the screen forming coalitions, forming firms.  There’s a whole bunch of underlying things like utility function and a variety of other things we got on that model that are not showing.  So that’s all the microscopic stuff X.  You saw the Y, you saw the output of the model.  

And it turns out that there are two expressions here for Y at time T + 1.  There’s this expression and there’s this expression.  So we can ask are they the same.  And if we just take this expression here and plug in for X at D + 1, this, we’re going to get this expression here.  And if we plug into the G, plug into here, the aggregation operator, we get this.  So these two models are going to be in agreement if, in fact, we have these technical condition on these aggregation matrices, on the dynamical matrices A times F equals G times E.  This is just a technical condition.  We don’t have to worry about this for now.  

What is equilibrium in this model?  Equilibrium is just the configuration where the dynamics are not changing over time.  So let’s look at the microscopic world.  We have X at time T + 1, goes like this.  Well, when X at time T + 1 equals X at time T, we’re in equilibrium.  We can solve for that.  We can show X equal -- the equilibrium configuration on the system is going to be just this, and notice that if we are in fact a microscopic equilibrium, it’s certainly the case that we are going to be a macroscopic equilibrium too, because we’re just taking this microscopic fixed point and multiplying it by the aggregation operator to get the macroscopic.  So imagine if in my agent model that I just showed you, imagine if all of a sudden the agents had just kind of quieted down and they had formed fixed coalitions, fixed firms, they just stayed there.  That would be a configuration.  

We did not observe that and here’s why we didn’t observe that.  Because there’s a large number of other configurations in the model in which there’s some equilibrium at the macroscopic level, which is produced not by microscopic fixed point, but we’re going to take the microscopic fixed point and add to it a whole bunch of stuff in the null space of this A matrix.  Now, because A is rectangular, A is projecting from some high dimensional system to some low dimensional system.  It’s going to have a quite -- potentially large null space, which means a whole bunch of dynamics that can happen in it that are going to just cancel out.  They’re not going to be observable at the microscopic level.  So we can have a whole bunch of things like the molecules in this room are happily moving around and -- but the temperature is not changing.  So this is just kind of what’s going on in the background when we have microscopic dynamics but macroscopic equilibrium.  

Okay.  So that was the -- that’s the picture kind of on the social level.  What if we really do though, what if we take John Nash at his word and we say we’re going to have dynamics going on?  We’re going to really assume away all the dynamics by having fixed point equilibria?  Well, now there’s a conceptual problem; that is, if we really have an equilibrium that is kind of a mechanical equilibrium, how are we going to get dynamics?  I mean, think about this building.  It’s a mechanical equilibrium, the only way the building is going to start moving presumably if someone starts shaking it, the wind starts blowing hard, a tornado comes through town or something.  But in -- and so when we have the conventional view and the financial markets is when you take a conventional economic view of things and the markets an equilibrium, then the only thing responsible for dynamics could be some kind of stochastic news arrival process.  

Or take macroeconomics: because this thing is assumed -- our economy is assumed to be in equilibrium, the only way to move it around is with a technology shock.  That is, once the thing is in a static configuration, there’s no way it can move of its own devices.  In epidemiology, if we really imagine the system is in some kind of -- if -- imagine today we were in avian flu equilibrium, we’re just waiting for that next mutation to happen.  As opposed to a view of the world where we’re going to say the system can be a microscopic disequilibrium and we’re going to have endogenous dynamics thus.  We use quite different views and particularly very different views in what the origin of dynamics are in models of this type.  

Okay, so on quickly to the behavior level.  This is now -- let’s look at just the dynamics of kind of individuals.  I want to think about dynamic study states, non-linearity and I’m going to invoke this, what I’m going to call economical problem called driving to work, which will become clearer as we go through.  Okay.  Think about yourself, think about individual behavior.  Riding a bike is inherently untenable if you’re not moving.  There exists an equilibrium configuration of riding the bike, but unless you put some dynamics on top of that, very hard to stay just sitting on top of the bike if you’re not moving.  But if you pedal, if you’re going up uphill or downhill, if you’re pedaling, you can balance for a long time.  

So the dynamics are critical, in fact, for this kind of quasi equilibrium or steady state to obtain; the actual static configuration is irrelevant.  I think many, in fact, social circumstances are like this where you can’t imagine the system functioning if it was at a fixed point steady state.  If the dynamics were taken out of the model, it would not be meaningful.  Because the dynamics are in there that, in fact, it becomes useful to us.  And I have a couple of examples of that now.  As an example though to say the world is not only dynamic but it’s also non-linear, consider the following example: how non-linear is the real world?  Well, you say this linear stuff, non-linear stuff, we don’t know.  You’ve heard about cash, you’ve heard about complexity, you’re not sure how non-linear the world is.  

I’m going to give you an example of how non-linear the world is.  If the world were linear there would be a lot of ways you could drive to work.  Separate driving into steering, breaking, and accelerating.  Okay, there’s three modes to driving to work.  If the world was linear by super position, you could do those in any order you wanted to.  So you could sit in your driveway, sit in your garage, you could do all your steering, and then just push the gas pedal and you would get to work.  Obviously, that’s impossible, at least without doing violence to your neighbor’s lawn.  So in fact, the world is very non-linear and the fact that -- you know, the actual way we conceive of the dynamics is going to matter a lot.  

Many years ago, Scott Page wrote a paper called, I think, Why Networks Matter, and this is just why non-linear dynamics matter for social systems.  And it turns out that this general idea that -- about the car driving problem has a more general interpretation.  I’ve written here it’s the power of interaction, and the driving to work problem is the following: imagine trying to program a machine to drive to work.  So it’s going to -- you’re going to sit in the back seat and read the newspaper or read your research papers while the car drives you to work.  Well, it turns out that this is actually not an algorithmic problem of the traditional kind because there’s no way you can give the machine enough information to solve the problem algorithmically.  That is, the machine is going to require all kinds of data that’s going to come in real time during the course of the drive to work in order to actually execute the problem.  

So we need to think about this instead as a kind of interaction.  That, is you need to program your machine so it interacts with other machines, other cars, other stop signs, stop lights, et cetera, other people so that it can actually carry this out.  So it turns out that this is an example of what is today called interactive computing in which -- and I know you guys are not computer scientists neither mathematicians, but it turns out we actually can provide a different kind of foundation for computer science through what’s called interactive computing.  I’m not going to spend much time on it except to say that agent based modeling is a certain kind of this interactive computing where we’re going to realize interactive computing with agents; autonomous software objects situated in environments which they glean data from each other and interact.  

These are really not turn machine environments even though any of computer models could be coded that way.  You’ve seen Josh give an example of a model of many, many agents; maybe a billion.  I showed you a model with some tens of thousands of agents.  Many examples of this are possible today.  And then in this -- in the world of agent base modeling, which is a natural tool for dynamics, we have agent complexity, which spans the range from very simple agents to complex -- I've written even simplistic agents here, meaning simply agents that are probably too simple to even be credible, but we use them merely for lack of anything better.  

So my perspective is, in fact, that for problems of dynamics in particular, agent models really are a substitute for mathematics.  That is, real world problems are just too hard, too complex to be rendered mathematically.  We have real world heterogeneity to deal with.  We have real world networks to deal with, as we just heard a little bit about from Michael.  We have -- oftentimes the real world transients matter a lot.  For example, you can view the whole SIR paradigm that Josh showed, in which the disease happens and gets transmitted.  That's really a transient dynamic.  So agents are a way to re-render many of these problems, many of these intrinsically dynamical problems computationally.  

So I've argued about basically the sufficiency of agents.  Now I want to make a very pragmatic point, simply to say the only real credible way for us to utilize this machine that we have on our desk -- God has put us here in the era of great computer hardware coming as mana from heaven.  And the only way for us to effectively use this is to really fill all of that memory given to us with agents.  I mean, the natural way for us to use this great device that we buy for a thousand dollars is not to fill it full of a gigabyte of equations; you can't fill up a gigabyte with equations.  That's just too many equations to actually code in.  You're going to make a mistake somewhere, and it's going to wreck the whole system.  But you really can fill it up with agents by simply cloning simple agents.  It's the natural way to build, I think, to make progress with this great machine that -- great machines that we have is to use agents.  

So there is, in fact, an agent foundation for biological and social sciences emerging.  There's also these social foundations, interactive computing [unintelligible] of computer science that are emerging, but I won't say more about that now.  I’ve just written Moore’s law here, shown Moore's law.  Every 18 months, you get twice as much computer power on your desk.  Every six years, you get a factor of ten improvement in computing power.  So you'd be able to render models.  Today, you don't know how to maybe build models with a million agents, but you'll be able to do that in just a few years out.  

So the summary of all this is that the dynamics in human systems and health systems and all the kinds of systems that I care about that I work with, dynamics are not the unusual state; they’re actually ubiquitous, they're always there, always to be dealt with.  But modeling them, particularly mathematically, is hard.  We turn to the computer as natural.  I think there is this new paradigm emerging for interactive computing systems that I can speak more about if there's interest -- not the main subject here.  That’s perfectly suited for modeling dynamics; I think it's a natural way to think about health dynamics.  And today, although we are ten years into this evolution revolution in agent computing, I think it's fair to say that we still don't know a lot about how to do this right and it's a very, very pregnant time to be working in this subject, and I invite all of you to get your feet wet with it.  Thank you.

[applause]

[low audio]

David Krakauer:

Thus far, and I just want to add -- make a few remarks.  This is going to -- the first half of this talk will be largely conceptual, almost metaphysical, I guess, and reflect some discussions and arguments that I've been having with my colleagues at SFI on the character of a theoretical medicine.  What it would mean to have a theory of health generally.  And the second half will be more technical.  I also want to add a caveat, as Michael did, that this is really not the view from biology; it's the view from a biologist, and we're all aware, of course, of the dangers of confounding our own views with the views of the rest of the world.  [laughter]

Now, one of the dominant ways in which biologists view the world is through collection and classification of particulars.  One of the frustrating things that one encounters when doing theory in biology is coming across what Howard Gardner calls, in his multiple theory of intelligence, the naturalistic IQ, the naturalistic category of intelligence.  And in medicine, that's probably even more the case.  And so the history of medicine is really the history of case studies and case histories, trying to establish a field based on the enumeration of particulars.  

And it's not surprising really that that’s true in biology and in medicine because they have a similar history in the Renaissance.  And figures like Konrad Gessner of the 16th century, who was a physician, a botanist, a zoologist, a geologist, a mineralogist and a universal bibliographer.  And that's contrasted, I think, with the view from physics, which tends to be about abstracting general principles from systems.  And that tradition is typically associated with someone like -- this is Johannes Kepler.  And Johannes Kepler wasn't really a physicist; he was more a mathematical theologian.  On the right is the fronter's piece from his book The Mysterium Cosmographicum, and in that particular text, Kepler suggests that the orbits of the planets should be understood as circumscribing a nest of plutonic solids, each of which is in place within the other and all of them encased within a sphere, describing the orbit of Saturn.  And Kepler thought this was okay because he thought the universe was created by God, and God created a universe that was meant to be intelligible by man. 

And so why would he create a messy world?  He would try to create a very ordered world.  And that's what licensed Kepler and many other physicists to adopt this approach of pursuing abstractions, typically represented using mathematics.  And you might think, “What the hell is he talking about?  Why are we talking the 16th and 17th centuries?”  But I want to claim that the 16th and 17th centuries are still with us now in the 21st century in the way in which we do medicine.  Okay?  And in the way in which we do physics.  

So here are some characteristic quotes from physics just to give you a feeling for how physicists think about the world.  So this first one is from Stephen Hawking: “My goal is simple,” notice that modest remark, “it is a complete understanding of the universe, why it is as it is, and why it exists at all.”  Okay, so… [laughter].  Here's a quote from Steven Weinberg: “Maybe nature's fundamentally ugly, chaotic and complicated.  But if it’s like that, then I want out.”  [laughter]  And finally, my favorite, this is: “If I could remember the names of all these particles, I'd be a botanist.”  And that’s [inaudible].  [laughter]

And now let's turn to the physicians to see how they think about the world that they work on.  Okay.  “By keeping my hand in, it’s the way I keep learning the main way you learn -- is the main way you learn in medicine, and by practicing working with patients.”  In other words, that's basically getting your hands dirty.  That's how you do medicine.  Here's another one.  This is from William Osler: “Observe, record, tabulate, communicate.  Use your five senses.  Learn to see, hear, learn to feel…” and so forth.  It sounds more like a prescription for making love than for doing good science.  [laughter]  And finally: “Treat the patient, not the X-ray.”  Now, that's kind of interesting.  Consider the individual particular, not the abstraction of the individual.  Okay?  

And this dichotomy is understood to be a problem; it's understood to be a problem partly reflected by the fact that we're here in this room today.  We can't continue doing this kind of particularist medicine.  Could one import some of that abstraction thinking from physics?  And this was a review paper some of you have seen.  It was published in Plus Medicine in 2004, where they say, essentially -- I mean, it's in that paragraph that’s -- I don't know.  You can sort of see it over here, and they essentially say the problems in medicine aren’t only political, social, and economic; they're intellectual.  And if we don't inject some intellectual vibrancy into medicine, we'll basically be doing the same kind of medicine in the future, just more efficiently, faster.  

And it was sort of dealing to do with this problem that last year I decided to have a meeting at the Santa Fe Institute that's funded by the NIH on what I call the foundations of theoretical medicine.  And I had someone put a chalk in the hands of one of these beautiful illustrations by Vasari just to turn this corpse into a theorist.  And the way in which the meeting was structured was to have present at the meeting some of the people who are here, representatives of various specialties of medicine, but to try and have each specialty represented by both a practitioner and by a theorist.  And we did this in the company of 20 medical students with the hope that they would be infected with this particular mean and go back to their medical schools and convince their colleagues that this was a worthwhile pursuit.  

And the basic logic was, really, barring the notion of phenomenology from physics.  I mean, if you think about physics as one kind of unification when observed in physics, and that's the unification given to you by what Rob was just talking about, by dynamics.  You know, all these subspecialties of physics all make extensive use of classical mechanics, typically linear.  And one can do exactly the same thing, of course, with the specialties in medicine.  Say, look, get a bunch of specialists into a room and have them talk to each other through the unifying lens of dynamics, but in this case nonlinear dynamics, typically dissipated dynamics.  

But, of course, this is a very modest form of unification; it's not the kind of unification we really do at the Santa Fe Institute.  It's true when we had a lot of talk about models this morning and the value of modeling, but I think that's actually only the first step towards true theory.  And the true theory is this kind of theory.  This is the kind of grand stuff that Hawking and Weinberg and others were talking about.  And that is the recognition that Newton's theory of classical mechanics is really just a special case of a geometric theory of gravity that Einstein gave us in his general theory.  And the fact that we can look at many particle quantum systems using quantum field theory and that we can extend the standard model by introducing strings rather than particles to generate something like a quantum theory of gravity.  

So this is the grand unification that we aim for, and the question is: is it meaningful to ask whether we could have a grand unified theory of medicine that goes beyond just phenomenology that is creating nonlinear models of cardiology, oncology, immunology?  At this point, you think I'm completely mad, right?  Well, it's okay.  So what I'm going to claim is it is possible.  And the point is where would it apply?  And I'm going to claim that what we want is a unified theory of health.  Okay.  

Now, this is a funny thing coming -- not coming from medicine, you'd imagine that medicine would be all about health; in fact, it is in the title of this meeting.  And yet when you look in textbooks and you look online, you can't find anywhere a definition of health.  It's a little bit like life in biology; it’s a complicated concept.  And so I looked carefully and you can find a few, and I'm going to show you why I think they're deficient.  

The first definition that I observed was one due to Jenner, Edward Jenner.  He’s an 18th century physician from Gloucestershire in England.  He's credited with the invention of the small pox vaccine, and this was his definition of health -- really it was his definition of disease, but implicitly a definition of health: “The deviation of man from the state in which he was originally placed by nature seems to have proved him a prolific source of diseases.”  In other words, it’s what I call the equilibrium theory because it says that essentially health is a state and disease is a source associated with perturbations or departures from that preferred state.  And this particular definition was reinforced 100 years later by the United Nations, where they added, essentially, mental health and social health.  But again, health is a state of a system.  

Now, at this point, we're going to do a little bit of calisthenics because I want to expose to you why those two definitions are inadequate.  If health is a state that lives in a high dimensional system, then just by applying a very weak anthropic selection principle, we can assume that it's an attracted state.  Okay?  Otherwise we'd never see it.  And so I'm going to ask you to indulge me at this point.  Imagine I had two patients.  They're both in the same state, so by the Jenner/United Nations definition of health, they're equally healthy.  But if I were to ask you which of the two patients is healthier, which one do you think is healthier, just put up one hand if you think it's patient one and put up two hands if you think it's patient two.  

Okay, so the axes are arbitrary axes.  The X-axis down there would be the configuration.  It’s a projection, a high dimensional projection onto the line of a configuration of your underlying structural states base.  And the axis on the right is some health axis.  And so they both have exactly the same -- right, good.  So the majority, the majority with two arms, with a few one arms -- can I just ask you why you put up two arms?  

Male Speaker: 

Because it's more homeostatic on the right.  

David Krakauer:

It’s more homeostatic on the right.  So can you just elaborate on that a little?

Male Speaker:

The person maintains their state of health [inaudible] across a wider range of the projections or the combinations of [inaudible].

David Krakauer:

Right, very good.  Okay, so, all right.  So the idea here is that somehow health is not just about the state, it's about the ability to return to the state when perturbed.  Right?  Okay.  So let's look at the next one.  So again, let's have a sort of show of hands.  Which do you think is healthier now, patient one or patient two?  No one knows.

Male Speaker:

[inaudible]

David Krakauer:

Well, okay, this is just the state, some functional attribute of a system, okay, which we can measure.  You needn’t even think of it as health.  You can just think of it as the state of a system.  I'm going to ask if metaphorically speaking which of these would you consider to be healthier.  In fact, you’re sort of pre -- I think you're guessing where I'm going to be going in a second.  Yes, go ahead.

Male Speaker:

Is increasing F1 good [inaudible].

David Krakauer:

No, no, there's no notion -- there’s no notion here of -- there is a -- the basin of the attraction -- this is an attracted state, so the basin of attraction is what you want.  And that's where that little ball is sitting.

Male Speaker:

Okay, but a deviation from X1 is disease or what?

David Krakauer:

Yes, it could be disease.  So under that condition, which would you favor, one or two?  Well, same gentleman with two arms, what would you think?  Why would you say two?

Male Speaker:

The person is more likely to be in the [inaudible] irrespective of where you are on the X-axis.

David Krakauer:

Right, so this system on the right illustrates degeneracy.  There are multiple states, which can all take you to the same function, all right?  So for example, if you are an amputee, you might be able to retain your functioning even though clearly you wouldn't still be in state X1.  Okay.  So it's good that I picked you because you're making the point that I want to make, and that is that we can now just enumerate the essential properties of a healthy system.  One is that it relates to the state and function of some phenotype.  Two, it's about the ability to maintain that state when perturbed.  And three, it's about having multiple ways of achieving the function where you have some underlying adaptive process which can move you between these different meta-stable states of the system.  

So any adequate definition of health, I will claim, has to have an equilibrium property, it has to have the homeostatic property, and it has to have the degeneracy property.  But interestingly enough, if you look through the literature, that's not the case.  At this point, you could still dispute this with me.  Now, the reason why I think this is a useful notion of health is because from -- the view from biology is as follows: it turns out that these are exactly the properties of systems in biology we call robust.  Okay?  And this is fundamentally my definition of health, just substituting for robustness the word health.  And I've included out front the sort of mathematical derivation of this set of concepts in case anyone is interested.  

So the notion here is that we can make some progress in health because I think it maps on exactly to a problem that lots of biologists have been thinking about.  That is the problem of robustness.  And what this means, of course, is that you can talk about a healthy individual in the same way you can talk about healthy ecosystem or a healthy city.  Now, at this point, you’re thinking, “He's even madder than I thought.  First it was the 16th and 17th century, and now you’re telling us that in fact there is a biological set of concepts that are essentially analogs of concepts that we’ve been thinking about.”  

But to make this useful, of course, I need to convince you by essentially establishing what the mechanical principles of health are.  I can define it; I can enumerate its essential properties.  What I want to now show you is that the essential properties of all robust or healthy systems are basically the same, regardless of whether they're ecosystems or individuals.  And so over the last, I think, ten years there's been a huge effort in theoretical biology and in statistical physics and elsewhere in computer science to try and identify what the essential mechanical principles are that maintain some kind of functional invariance when a system is structurally perturbed.  And, you know, these kinds of concepts are well known to you.  One of them, of course, is the notion of duplication, generating redundancy.  Another one is the concept of modularity.  Notions of feedback, purging, exploratory behavior, repair, policing and so forth.  And I just say that I've reviewed many of these kinds of concepts in another paper that's up there just to give you a sense of how they're being deployed in the literature currently.  

So these are the basic principles that you observe in all robust systems.  You know, when you're building a plane and you're constructing the avionic circuit, you use extensively the notion of redundancy.  And that's not something -- and that's also true, of course, in biological systems.  And what I want to do is just pick out one of these mechanisms to now show you how theoretical biologists and geneticists have tried to make progress in understanding how one of these principles contributes to the robustness of individuals.  Okay?  And I particularly want to show you how difficult it's been even with the very simplest of all principles; that is, duplication and redundancy.  

Now, the notion of stability through duplication is an old one.  Many of you, or some of you, will know a little bit about architecture.  This is the so-called flying buttress.  This is a gothic cathedral.  Essentially, these things here, the vertical pillars, are buttresses, and they're connected to the main body of a cathedral through a half arch.  And a half arch transfers the thrust from the vaulting of the cathedral out to the buttress.  And what this allowed the architects to do is to reduce the mass of stone in the walls of the cathedral and replace them with windows.  So the great property, if you like, the great characteristic of the gothic cathedral are these stained glass windows, which you couldn't have in Romanesque cathedrals because they had to have the wall, the main wall of the cathedral, be load-bearing, and that's not true when you have flying buttresses.  It's just an ingenious design.  

And, of course, the way in which you do it is by proliferating them.  You have a multiple number of -- a duplicity of flying buttresses, and they support the mass of the ceiling.  Now, in 1284 one of the most famous gothic cathedrals in the world, Bovay [spelled phonetically] cathedral, collapsed, and it was claimed under stress in a storm, and it was claimed that what had happened is that the architect simply hadn’t built enough redundancy into the system.  Okay?  And if they had a few more buttresses, the vault would have survived.  And that kind of reasoning is exactly the kind of reasoning employed by geneticists to establish whether or not duplicate genes contribute to the robustness of phenotypes.  

And so I need to explain to you how they do this.  Here's a gene.  It duplicates.  Typically it duplicates through something like non-homologous recombination or retro-transposition, just mechanisms for generating duplicate genes.  And over the course of time, now that those genes sit in different places in the genome, they diverge.  Okay?  So genes that duplicated a long time ago are more different from each other than genes that duplicated recently.  And so within any one genome, you have multiple duplicate genes, they're called paralogs [spelled phonetically] by geneticists, some of which are very similar and some of which are very different.  And you can apply the following logic: let's take a gene, let's assume that it was duplicated.  So X1 gets duplicated to create two X1s, and the idea here is that they still perform the same function because essentially what you've done is copied something you already had.  It's like having two copies of Ulysses.  You don't have any more information than if you had one.  That's what physicists call an intensive state variable.  

Now, if I knocked out one of those duplicates, right, I still have the function I had before; it doesn't matter.  Right?  I have two copies of the book, someone steals one of them, doesn't matter, I still have the same information.  However, if the genes duplicated a long time ago, they're very divergent like they are in the right case.  Then when I knock out one of those genes, then I lose my function.  So it's a very simple concept, right?  And it happens to be a property of real genomes.  So my colleague, Andreas Wagner, said, “Okay, that's great.  What I can do is I can go into the yeast genome, I can look at all the duplicated genes, right?  And then I can see…”  And yeast has this wonderful property that people have done knockouts, single and double knockouts of all the genes.  So there's a yeast organism with every single one of its genes missing, one at a time.  And he said, “I expect that if I knock out genes that have duplicates that are similar, then the consequence for the yeast will be minimal.  However, if I knock out a gene of a pair where the genes are very different, the consequences will be severe.”  Okay?  

And so what you can do is you can organize the severity of the effect into so-called fitness classes.  These basically measure the growth rate of the yeast.  And what he effectively found is there's no correlation at all; that if you look at the right graph, that thing called KA is the measure of the similarity of the two proteins at the amino acid level.  And whilst you might see slight trends, Andreas concluded that duplicates in genomes conferred no stability benefits to the function that is the fitness.  Okay?  And this was actually a sort of devastating finding because many, many people have been claiming, me included, for some time that duplication redundancy was an important property of a robust system.  

Three years later, the study was repeated by a group in Chicago.  And they found exactly the opposite.  They extended the study to 1,147 pairs, whereas Andreas only looked at 45.  And they found if you look on the right, which is a measure again of the distance, the difference between the duplicates, if you look when the distance between them is very small, they're recently duplicated.  When you do single perturbations, single knockouts of one of the duplicates, most of the effects on the phenotype are weak, right?  However, when they are very distant or very different from each other and you do perturbations, then you find that many of the fitness consequences are severe.  

So in this study, the opposite was found.  The duplicates confer robustness through redundancy in a larger set of genes.  So one interpretation would be that Andreas was simply wrong because his sample size was too small.  There was an effect.  He just didn't see it because the signal to noise ratio was too small.  And that when the study was repeated when there was better data, it wasn't Andreas’s fault they found the effect.  But it turns out not to be the case.  In fact, they're both true.  Okay?  

And this year, a very nice study was done using something called epistatic mini-array profiles, and I need to explain this to you because -- and it works as follows: take a yeast, okay, pick a pair of genes that are duplicates.  Let's call them A and B.  We can knock them both out and we can look at the consequences on the colony size, some equilibrium property of the yeast, either the growth rate or how big the colony is when you knock them out.  But I can also knock out each of those pair, one of the pairs independently, though not A and not B conditions, okay?  Now, notice that in this particular illustration, the double knockout leads to a much smaller colony size than either of the single knockouts.  

Another possibility is -- this one very interesting, and that is the double knockout is actually better than either of the single knockouts.  It's as if having these individual genes on their own is a bad thing, it's worse than losing them both.  And so you can ask the following question: is the percentage reduction in the double knockout greater than the sum of the percentage reductions in each of the single knockouts?  If that's true, this is a nonlinear effect.  The double knockout is worse or better than the sum of the two singles.  This is called in genetics epistasis, okay?  So with that knowledge and these types of genes when you do a double knockout with an epistatic effect are called SSLs -- synthetic sick lethals.  Okay?  

So look just to the top right.  It's exactly the same concept as the previous experiment.  There's a weak condition on the left and a severe, so instead of having four categories, there are just two.  And look at the fraction of genes where you knock out one, when you have a duplicate versus you just have one copy of it.  So I knock out one gene of yours, which is unique, it’s pretty bad.  However, I knock out one gene of yours that has a duplicate; it's pretty good.  So this reaffirms the 2003 finding that you tend to find weaker effects when you knock out one gene of a pair.  All right?  

Okay, so now what we do is look at the bottom left figure.  Okay.  It was found that, in fact, not all duplicates confer this property.  The only duplicates that confer this robustness property are the duplicates that have the SSL property.  That is, duplicates confer robustness when the double knockout is worse than the sum of each single knockout.  That is, robustness comes from epistasis; it comes from nonlinear interactions between duplicate genes.  So your intuitive picture that somehow robustness comes from just having a copy is wrong, at least in genetics.  There's some much more complicated nonlinearity that's playing itself out.  Okay.  

And now I'm going to give you just a little bit of math to try and explain in one particular context how that might work.  So one of the areas where biologists have been very interested, in particular theoretical biologists in robustness, is in morphogenesis.  That is, why is it that body forms are so invariant?  I mean, we’re, of course, because of our cognitive evolution, very sensitive to variation.  But really, we're basically the same.  Okay.  We’re nicely bilaterally symmetrical by and large.  We have two eyes, we have a nose, and all the rest.  All right?  It’s a very complicated architecture, this high-distributed control of the kind that we've heard about today and yet it always seems to be made pretty well.  

And in the 1950s, there was a lot of work on teratology in invertebrate development, so-called homeotic mutants.  And so this -- these are very famous.  On the left is the so-called bi-thorax.  This is a fly that if you know -- true flies don't have four wings, two pairs of wings.  They have one pair of wing and a little pair of stabilizing structures called halteres.  But what's happened in the bi-thorax is that the second thoracic segment has been duplicated.  And on the right is an even weirder phenomenon; it's called the antenna pedia mutant.  And this is a fly that has legs on its head instead of antenna.  Okay.  And the genes are very well understood -- some Nobel Prizes, one Nobel Prize was handed out to three people for this work.  Now, in the 1940s, one of the sort of guiding lights of SFI, C. H. Waddington, became very interested in this phenomenon of why it is that morphogenesis is so stable.  And he posited the existence of what he called epigenetic landscapes.  And the way he thought about it is that you can think of development as a ball rolling down a hill.  But there are particular gullies in that landscape such that the ball can't fall everywhere at the base but falls in preferred positions.  And that those gullies are somehow provided by mechanisms of developmental robustness; what he called canalization mechanisms.  Okay?  

But Waddington didn’t have a theory for his idea.  He had pictures.  And he had an interesting set of concepts.  The theory actually was provided in 1952 by Alan Turing, and Alan Turing was very interested in things like this: the stripes on zebra, the patterns on snail shells.  He was actually generally interested in the laws of form.  And -- but he picked these plainer patterns because they are reasonably easy to mathematize.  And the way Turing thought is like this: he said imagine that there are two morphogens, two chemicals; let's call them black and white.  Let's distribute them as they are on the top left there over a plain.  And let's assert the following: let's say one of the morphogens is an activator.  It gets synthesized but it's autocatalytic; it can turn itself on.  But it can also turn on another morphogen that we're going to call the inhibitor.  The inhibitor can then turn off the activator.  And what you do is you spill them on a lattice, right?  And we allow them to interact and nothing really happens.  But then what you do is you add an instability to the steady state, which is diffusion.  You allow that the inhibitor can defuse, move over the lattice at a slightly higher rate than the activator, and then all of a sudden, as if by magic, you get stripes.  

This is a very profound finding.  By some it's considered the canonical instance of emergence.  Right?  By others it's not.  And this is an argument that we could have later, actually; I mean, many people will claim that emergence is an entirely anthropomorphic concept because what it reflects is your own cognitive limitations.  Turing effortlessly intuited that the consequence of that kinetic and that diffusive rule would be pattern.  When I looked at it, I had no idea, and you have to solve the equations.  And so emergence is actually quite a difficult concept because I think there is a genuine anthropic component, subjective component to it.  

So the way that Turing did it is he wrote down a very simple set of coupled partial differential equations called reaction diffusion system, the kind that people here who know about finance will be familiar with.  And so it has basically kinetic terms and diffusive terms.  Those are those funny little upside down triangles on the right, rendered the diffusion with appropriate boundary conditions.  And I'll just flash this quickly because I just want to show you that one can do this mathematically.  One can determine that there is a stable equilibrium with no pattern, and when you introduce diffusion, all of a sudden this gives rise to inhomogeneities in space, which finally grow to generate dominant patterns.  For those of you who are interested, there's a dominant wave vector in the Fourier representation, and that's what K is there.  

So one can then write down a space, and again, don't worry, just look at the triangle on the right.  There is a space in this high dimensional system that can support pattern.  That is called the Turing space.  And we spent a large amount of the last year trying to work out how you escape from the Turing space, okay?  So essentially, if you're in that space, you have pattern.  But if you walk out of it, say by Brownian motion, then you lose pattern.  So one can now ask in the Turing system, which is a kind of microcosm of development, what happens if we duplicate an activator or duplicate an inhibitor?  So we're going back to the role, the value of redundancy.  

Okay, so one duplicates, one has an activator/inhibitor, and one duplicates it.  And what happens is you get a much bigger set of inequalities to generate your Turing space, but the essential insight is given by this figure.  If you duplicate an activator, the Turing space expands.  If you duplicate an inhibitor, the Turing space contracts.  So duplicating a component is not neutral with respect to your function.  Because of the nonlinearities in the dynamics here, duplication changes the underlying structure of your state's space.  Okay?  And it does so in a very nontrivial way.  And so it's hardly surprising going back to the Imills [spelled phonetically] result and the Gou [spelled phonetically] result and the Wagner result that they weren't able really to generate the correct hypothesis because they didn't have the right model in their mind and they couldn't, because people don't think well when it comes to nonlinearity, okay?  

So let me just now conclude.  So what have I claimed?  I suggested, really, that from a biological point of view, you can think about health as being analogous to robustness.  Robustness has a virtue of being studied by a lot of theoretical biologists, and there are some useful definitions around, and we've contributed one.  There are three ingredients if you buy the notion that there are correspondences to robustness, at least.  These aren't the mechanical principles, the so-called statistical properties, and these are an equilibrium property, the perturbative or homeostatic property, and a degeneracy property.  And that there are going to be many mechanisms; I just talked about one just for about 20 minutes, redundancy, but I mentioned others: exploratory, behavioral, modularity and so forth, feedback control.  All of them can generate robustness, but it turns out to be very hard to show, to demonstrate in practice when you're rigorous about it, how they contribute.  So that's what that point is.  So there's an underlying complex dynamics.  You can't just use your intuitive reasoning.  It fails.  

This is that notion again of redundancy.  So what I want to claim, my strong claim, is I think what these kinds of studies imply is that really to understand how complicated biosystems work, you need mathematics and computation.  Okay?  And moreover, you need more unified theories.  It's not enough just to build -- I think the Turing case actually was more -- it’s funny because I was returning to my roots in biology, right, by giving you a case study.  It happened to be a case study in mathematics but it really was just a case study.  I mean, what we really want is to develop what physicists would call universality classes.  Want to show that there are a whole range of different mechanisms, all of which yield the robustness property, not just one.  The only way you can do that, I would claim, is through theorizing, like the kind that I gave you examples of.  

And so I want to suggest that it's time to take seriously this general theory of health.  And I think one of the important reasons why it's important to take seriously general theory of health is because what we really need is a general theory of medicine.  And medicine is nothing other than a perturbation that we deem to be good.  All right?  When you go back to that picture I showed you before of these degenerate solutions, metastable states, all medicine does is move you around in some high dimensional state space.  Sometimes it moves you back to the state you were in, but more often than not, it moves you into another one.  And you only hope that that new state that you've moved into can render a function that’s useful and comparable to the first.  Okay.  And so, I'll end there.  Thank you.

[applause]

Male Speaker:

Thank you, David.  We're now going to ask every -- the last four speakers to come up so we can do some question and answers, and while we reconfigure, I'm just going to make some housekeeping announcements while I still have your attention.  So there is a dinner this evening at 6:30 during which Mitch Waldrop will be speaking about communicating complexity.  Everybody is welcome to dinner.  My understanding is that you had to actively opt out for us not to think you were coming.  So unless you actively opted out, we think you are going to be there.  Sort of a passive consent kind of process.  The dinner is at the Palmer Commons, which is essentially across the street, and you can follow the bridge and there will be signs.  So that's at 6:30.  

In terms of if you don't want to go for dinner, there is a shuttle which is coming here and can pick you up at 5:30 right outside.  If you are going for dinner, there will be a shuttle which will pick you up after dinner.  And there is -- there are a variety of symposium related books for sale, which will be sort of furthering Karl's mission to sell lots of books during dinner, and they will also be around tomorrow.  

Okay, so having said that, those are all my housekeeping announcements.  And now we will take questions and I would like to challenge anybody to ask a question that spans all four of those talks.  [laughter]  And, of course, Michael has just that exact question.  Please go ahead.  Is the microphone on?  Yes, I think you're on.

Dr. Michael Macy:

Sort of.  I'm not sure this will span all of them, but two questions.  One, prompted by the last talk from David Krakauer, there is a large widely held view that man is a social animal and your story -- where has David gone?  There you are, and your story struck me as being -- I think this is a bad word in the kind of stuff you do -- reductionist, right?  You’re looking at the molecules and genomes of individuals.  So how would you fit in any of the social aspect of health in that one?  And maybe to -- this came up more in the morning than this afternoon, but there was some talk about, you know, Robert, in your closing remark, said we've got these computers, let's fill them up with things.  And it seems to me for models to be useful, the one point we heard this morning is they have to not be too simple -- the Einstein quote.  

On the other hand, there was a history in the 1960s of macro-econometric modeling where everyone was out to have a model that more equations than the next guy, and they grew to have 800 or 1,000 equations, and then there was a reaction that said these are getting too big to be understandable by the analysts, let alone by the people who they have to write the briefing notes for.  So there's a balance to be struck between being sufficiently complex to absorb or reflect the requisite variety versus being comprehensible and communicable.  So maybe that cuts across a number of the talks about how does one strike the balance about the right level of complexity in these kinds of models?

David Krakauer:

First of all, reductionism is absolutely not a bad word for me.  It's a great word.  And as if I had suffered a lot from some foolishness that claims that reductionism is a bad thing.  Real reductionism is the kind that I think good physicists practice.  That is, looking for unifying principles in nature.  That's what reductionism is all about.  Sort of about just looking at bits.  

But the emergence side is also important.  You know, with reductionism you work down to the basic principles but because the state space is so degenerate, you need the constructive rules where the emergence comes in to generate the ensemble of possible forms.  So it's a little bit like the recursion and induction/deduction.  You need them both.  And so I just want to clarify the idea that reductionism is a fundamentally good thing, and I think it's foolishness when people say it isn't.  

On the point of the social invention, I can't really answer it but I would say the following: I think that what I'm interested in is notions that are kind of universal.  It's like aging is a universal notion, right?  You can talk about the aging of a car or of a mountain and of a person.  I think in the same way, you might be able to talk about the health.  People do actually talk about sick buildings.  The question is, is there something really to that?  And I want to claim there is because if you actually look at engineered devices and compare them to evolved devices, many of the mechanisms that ensure stability of those devices are the same.  These are those mechanical principles.  

So when you talk about social systems, I'd like to think of them again as analogous.  I think it’s not that there's individuals and societies.  I think the principles that I would be after would apply in both cases.  And I don't think there would be -- there might be new principles, but I think these are sufficiently generic.  They should be observed wherever you see stability.  So I wouldn't even make the distinction between.  In fact, the Turing patterns you can observe in microbial gnats, in colonies made up of multiple individuals.  So where you draw the boundaries has always seemed to me, between individuals and societies, completely spurious, to be honest, especially when it comes to ideas and so on.

Male Speaker:

Anyone else from the panel?

Male Speaker: 

[inaudible] this conference this fall, and you mentioned pleiotropy is an example that's used in biological systems and how that's also used in human systems.  Maybe you should bring that up as an example.

David Krakauer:

You do it.

Male Speaker:

No, you do it.  [laughter]

David Krakauer:

So this is -- are you referring to the fact that you require the many to one property?

Male Speaker:

Yeah, yeah, yeah.  And just with the bathroom light [unintelligible].

David Krakauer:

Well, you can do it.  [laughter]

Male Speaker:

I'll give the social example.  And you give the -- so the idea of [unintelligible] is that you can have a many to one mapping, and so what you might want to do is have a bathroom light that goes off in an airplane that's linked to engine failure.  So you've actually got the same wire connected to two different things so you can actually get a separate warning signal.  But the same sort of phenomenon occurs -- that’s in an engineered system.  The same sort of thing occurs in biological systems.

David Krakauer:

So it turns out -- so I mean, so the basic problem in biology is that mechanisms of robustness are not intergenerationally robust?  And so if I build a system like a redundancy into a system, right, well if I remove it, it doesn't matter, does it?  Right?  It only matters if I remove them both.  And so that's one of the interesting properties in evolution, mutations often will knock out one system.  So there's been a lot of work on how do you maintain the mechanism of robustness?  How do you make robustness intergenerationally robust?  And it turns out that pleiotropy is one of the key ways in which you do it.  But your redundant system is not truly redundant, not truly identical, because the duplicates perform other functions alertly to their loss.  It's a critical device.

Male Speaker:

Mercedes?

Mercedes Pascual:

I have a question for David.  You talk about this definition of health that invokes equilibria and I was curious at what organizational scale in terms of the individual you were thinking about and whether you were using equilibria to be the [unintelligible] for the stationary states that we heard before, when everything besides that level is, in fact, extremely valuable.  Because there have been very interesting studies by people that come from the complex systems community in physiology, looking at healthy organs or sort of the functioning of healthy organs versus in sick individuals.  And there are properties of variability and complex sort of temporal records that are a signature of health.  And I'm just concerned that using this definition of health may obscure that.

David Krakauer:

Yeah.  No, you’re totally absolutely right.

Mercedes Pascual:

Okay.

David Krakauer:

[unintelligible] here, but this is that whole gig, right?  And I totally agree this is a very -- so in fact, a lot of my work has been on hierarchy and so that’s -- in some sense, you can think of that as the most distal level of function.  And so when Ari and Madeleina [spelled phonetically] work on their irregularities in healthy hearts, there is a level of individual function that they want to preserve.  But the way you preserve it is, in fact, through metastability.  And so I absolutely agree.  Actually, it makes this very interesting because one of the things that I've been pushing is the idea that stability at one level critically depends on any stability at lower levels.  Right?  And that would be a similar set of remarks.  So I think you're right, it's hierarchical and where we slice the cake, where we decide to interrogate it is quite subjective.

Mercedes Pascual:

Yeah, but it is an important question in how you approach these, what you call your unified theory.

David Krakauer:

Yeah.

Mercedes Pascual:

I think it's a fundamental question.  Otherwise, you have some sort of definition that is not a very good guidance.

David Krakauer:

I totally agree.

Pat Rush:

Hi.  My name is Pat Rush.  I'm a physician working in trying to apply complex systems to health for the past ten years.  Part of Plexus Institute, which some of the people on your slide, Dr. Krakauer, Tim Buckman, Ary Goldberger.  I just -- I thank you very much, Dr. Krakauer.  I thought that was a great presentation, and I hope that work for a unified theory goes forward.  I'd also like to say that I think your history portion covered well the Western history of medicine but omitted the Eastern history, particularly traditional Chinese medicine.  And part of one of the things I've been working on for the past six years is really looking beneath what I would call the veil of the poetic language, the way we've translated Chinese medicine, because I believe the ancient Chinese practiced pretty much up ‘til today completely understood the system as encompassing nonlinear dynamics.  And their whole treatment strategy is completely different from the Western strategy and is all about a lot of the things that you were talking about, and if anybody else is interested in that, I'd be happy to share more.

David Krakauer:

I'm going to say one thing and then I'm going to shut up, and no one can ask me a question again.  It's a recency effect.  I've irritated enough people that you want to vent on me.  So I will -- but I will address that though.  And that is -- so we have a post-doc at SFI who works on Chinese medicine, and I'm somewhat skeptical.  Okay?  And one of the reasons why -- but I'm interested because it represents exactly this kind of more holistic systems approach to medicine, right?  But what I found difficult to understand is a lot of Chinese medicine that I read into was based on one particular macro-state, and that is pulse.  So a huge amount of information is assumed to be present in pulse and the measurement of pulse in different states of health.  And I worry from the point of view of exactly the kind of mappings that Rob was describing in terms of the embedding of the X and Y dynamics, the microscopic and macroscopic dynamics, that it would be extremely difficult to infer underlying states from just the measurement of pulse.  So, you know, I'm open-minded but I wasn't really able to understand how so much information could be extracted from that one indicator.

Male Speaker:

Any other comments?

Pat Rush:

Would you like me to comment or just let it go?

David Krakauer:

Or afterwards, I'd be happy to or whenever.

Pat Rush:

Okay.

Male Speaker:

Let me ask for a comment from somebody else to combat the recency effect.

Male Speaker:

Yeah, I'm going to make one thought about these last two questions, and that is we talk about interdisciplinary work here at Santa Fe and in Michigan and in Brookings, I think, as well, is that a lot of times the model is what you might call sort of fan in disciplinary work.  Let's look at China and we bring in sociologists, medical doctors, historians, economists, psychologists.  We bring them all into a central problem.  There's a sense in a lot of what goes on in complex systems is it's fan out.  We look for sort of general ideas, concepts, models that apply across context.  And the last two questions are really intriguing to me as a social scientist because on the one hand when we think about robustness of social systems, recently there's been a lot of work talking about the importance of descent.  In about sort of underlying change, the sort of stuff Rob was talking about in terms of how you need this sort of constant churning underneath in order for a market or for democracy in some sense to remain functional and stable.  Whether this is sort of [unintelligible] creative destruction or whether this is sort of the logic of descent that Cass Sunstein [spelled phonetically] talks about.  

At the same time, you think of sort of the standard Western medicine that's a lot of how we think about economic policy that runs counter to the sort of stuff that Josh and Rob would do where it's sort of like, you know, their leg is -- so I cut off their leg.  You know, impose wage and price freezes or something like that, as opposed to thinking in a system sort of view.  So one of the things that's intriguing is that the answers you’re giving, even though you're using the language of medicine, we could give almost the exact same answers to the question in the context of social policy using the same sort of conceptual understanding and hopefully mathematic understanding we get of these complex systems.  I don't know if you agree with that or not.

David Krakauer:

No, I do.

Male Speaker:

George.

George Kaplan:

Yeah, there's been a challenging set of talks, extraordinarily interesting, and I won't take up Sandro's challenge to ask a question about all four, that integrates all four, but I think this does touch on at least a couple of the talks.  The first is a short comment, which is that, David, I would -- there's a slippery slope in moving from health to medicine, which I'm sure you recognize, and medicine mostly is disease, about disease, and health undoubtedly represents these broader, more abstract and more generic phenomena that you’re trying to isolate.  

But I think what intrigued me though about the interesting things I heard that you said was that there seems to be a kind of decontextualizing of the individual or the biological system from its environment.  Where there's attention, on the one hand, there's a willingness to talk about multiple levels of influences within an individual organism, but in those principles that you elaborated, the environment is kind of left out.  And one could imagine properties of healthy ecosystems, for example, which involve interactions between individuals and groups of organisms and properties of the environment.  And there would presumably be a whole set of abstract principles that would describe systems that worked and systems that didn’t work.  And it's not immediately obvious to me that they'll be identical, or they may be identical, to what you described as robustness within an individual.

David Krakauer:

I'm not allowed.

George Kaplan:

Pardon?  

[laughter]

David Krakauer:

I would -- if, okay -- [unintelligible].  And in some sense, I think it's just a very simple minded presentation and it's generating appropriate responses, and no, I think that -- so something that we've been doing quite a lot of work on is what gets called niche [spelled phonetically] construction in ecology, and that is the understanding that organisms build their own selective context.  The old Darwinian model is, you know, there is an environment that you don't control, there are selection pressures you don't control, and that individuals adapt to those varying selection pressures is bogus.  Most of the selection pressures any organism experience are other organisms and elements of the environment that it shaped.  So just think about oxygen in the atmosphere that was generated by an organism.  

So it's a huge source of interest, and I think what happens, by the way, if you follow this, and anyone who's interested I can tell you, to its logical conclusion, right, is you realize that you can't draw any boundary between organisms and environments at all between individuals and social systems, quite frankly.  And if you think you can, than show me formally how you can do it because I'm trying to do it.  And I think what happens then in that kind of weird continuum view is that these kinds of mechanisms do demonstrate a kind of universal property that whenever you see invariance, whatever level you choose to favor, you're going to have to find these kinds of mechanisms at play.  But I actually have the rather heretical view of not even believing in the individual.  And so I think I'm more with you than you realize.

George Kaplan:

That's great.  Thank you.

Eve Pinsker:

Eve Pinsker [spelled phonetically], I'm a cultural anthropologist, and I work in a public hospital.  And I had some comments on the mean paper.  I thought what you said about social dynamics was useful and important, but as a cultural anthropologist, I feel that a lot of the memetic approaches I've seen have limitations because they treat means as too much of a black box.  I mean, there's a lot of history in cultural anthropology and related studies looking at symbolic structures, and if you read, for instance, a good ethnography like Janice Body's [spelled phonetically] book on wombs and alien spirits, which deals with female circumcision in the Sudan, you can see why there's a whole set of associations around female circumcision that reflect in itself its own model.  

I mean, we're dealing with agents who have their own models, and I think that a really adequate account of how these things evolve over time has to look at the interaction between the agents models and the kinds of social dynamics that you were describing so that you have parallel processes somewhat the same as was talked about earlier with fear and infection.  That the symbolic resonances themselves produce effects that create the kinds of stabilities you can see over long periods of time.  But that in order to understand the dynamics of stability and change, you do have to look at the interaction between that and the social dynamics.  I mean, there's reasons why there was a long history in anthropology of making the distinction between culture and social organization.  And I think maybe we're finally at the point where we could model the relationship between them.  But I think in order to do that, we've got to look at some of the work that's been going on in cognitive linguistics and cognitive psychology and a little bit in A.I. like Shank's [spelled phonetically] work.

Male Speaker:

Well there -- I mean, I was -- I wanted, in fact, to be careful at the outset to say that I don't mean to be representing the views of most sociologists or anthropologists or social scientists.  I think that there are many other ways that people would look at problems ranging from smoking to female circumcision to foot binding and so on, and drinking.  So this one of -- that I'm presenting.  It is a view from sociology, certainly not the view.  And memetics itself is controversial for a number of reasons.  Partly because people feel that -- so some of the criticisms are that people want to really just focus on the phenotypes, on the individuals, and they don't like to think of this idea that individuals are carriers of a program that's instructing their behavior and that those carriers can then spread.  They really just want to think about the behaviors of the individuals.  And in a way, it does parallel some of the issues that Scott was raising about emergence.  So we can talk about the population level of many individuals, we can talk about the individual as a member of that population, and we can talk about the instructions within individuals that can jump from one to the other.

Eve Pinsker:

Well, yeah.

Male Speaker:

And so, you know, [inaudible] has invited a lot of that controversy.

Eve Pinsker:

Right.

Male Speaker:

I could have used the term norm instead of means and maybe escaped some of that, but the problem is that norms imply enforcement and I really wanted to draw the distinction between -- between these programs or instruction sets or rules that operate as conventions and without any enforcement.  So I thought norm was not really an appropriate term.

Eve Pinsker:

Yeah.  Well, no, I agree with you.  I don't think norms are appropriate either because, again, you have something that’s a little bit too linear and too much like a single thing.  When, you know, again, we are talking about models that are in agent’s heads.  I mean, or -- but what gets complex about this is that the relationships between the individual and the social level do interact in multiple ways that you get these models, internal models, that are socially learned but then individually acted upon, and then become part of the social environment that, again, you know, results in social learning.  So you've got the interactions going on between the structure of the internal model and the kinds of social dynamics that you were talking about.

Male Speaker:

Yeah, I suspect that what I'm doing is just maybe operationalizing some of those ideas in a more formal way to work out the logical implications of the assumptions that you might be making or -- I mean, I have to look more carefully to see if it really does match up.  But so we have a set of assumptions about interaction and about adaptation.  And then I’m trying to work these things out formally, but it may turn out that actually it’s very similar to some of the --

Female Speaker:

Yeah, well, I’m saying is I think there’s a level of internal -- there’s another level of formality that’s missing that we have to work on, and that’s the formalizing the internal models themselves.  Like this work that’s going on in schemas, some people call them cultural models, some people call them schemas, that kind of thing.

Rob Steiner:

Two brief questions, please.  I’m Rob Steiner from Louisville, Kentucky.  To Dr. Macy, can you comment more on memes and the small world network?  I’m just not familiar with the term, and if you’ll allow me to go on to the second question.  For Dr. Krakauer, where’s mindfulness in your model and also the same question for emergence?

Dr. Michael Macy:

So on memes and small worlds, so a small world network, you can think of it as -- think of it as a group of tight knit clusters with just a few -- very few ties among them.  And this is what can account for the famous six degrees of separation, that although there are billions of people on the planet, it turns out that it only takes about six jumps to get from any randomly chosen -- from one side to the other of any randomly chosen pair.  And so how is that possible if we’re all very tightly clustered and have lots of closed loops in our networks?  And the answer is that it just takes a very few numbers of these bridges.  So then the question is, all right, what about if we’re looking at the spread of information or at the spread of a biological pathogen, then those bridges make a lot of sense in terms of thinking about how rapidly they’re going to spread.  What happens if we’re looking at a cultural pathogen?  I’ll avoid the word meme, a cultural pathogen, and that has a higher threshold of activation or infection than is the case for biological or for information.  

And it turns out that the -- that the property of a network that’s crucial for their propagation is that the bridges are wide as well as long.  So instead of just thinking of long bridges that connect otherwise socially distant regions of a network, we’re now thinking about how wide are these bridges so that you get multiple sources of the contagion.  You need contact with multiple infected agents if it were activated.  And that’s the property that we focused on.  A lot of the research on diffusion has assumed these thresholds that are at the theoretical lower limit for propagation through social contact, and it can be dangerous to generalize from that, to cultural phenomena that have higher thresholds.

Rob Steiner:

Thank you.

Male Speaker:

David’s got --

David Krakauer:

I don’t want to answer your question.  [laughter]  So let’s see.  Let’s start with emergence.  So let me just recapitulate.  The talk tried to do two things.  One was simply to say it’s really a definition, right?  What would go into the definition of health?  Borrowing the view from biology, borrowing concepts from the study of robustness.  Okay, that’s the first part.  And so it -- sometimes it’s just about a definition rendered in mathematical form.  I mean, the paper is available.  

The second half is to illustrate the mechanisms which generate that property that I enumerated can be experimentally very difficult to dissect out, okay?  It turns out to be hard to work out how things contribute to this invariance property.  And I would imagine that the same thing would apply for states of health.  Extremely difficult to demonstrate the value of any conjectured mechanism.  Now, mind doesn’t feature at all, of course, in my definition.  I don’t really know what it means.  And I’m not being facetious; I mean, I genuinely don’t.  So I wouldn’t presume to talk about mind.  Emergence, as I said, and we can actually have a row up here about this.  I’d kind of enjoy that.  Because I don’t know what it means, actually.  

I think we’ve had some interesting definitions, actually, from both Scott and Rob.  But I was talking to Rob after, as I sort of -- I could post this question, I mean, look, I mean, you tell me guys.  I mean, so take two numbers, okay?  Five and three, okay?   They’re both odd, they’re both prime.  Add them together.  What’d you get?  You get eight.  It’s not prime and it’s even, okay?  It has a genuinely different property to its constituents, it’s just addition.  There’s no complicated non-linearities in the operator.  Is this emergent?  I mean, I think we need to say -- I think it’s very tricky.  I think that there’s a -- and I don’t mean to trivialize it.  I think it’s a genuinely difficult problem.  I think that there is, again, like all of these interesting concepts, there’s a huge subjective component to the definition.  And I think it has something to do with the computational complexity of the receiver.  My guess is the appropriate theory of emergence will actually have that form.  I think that would be another -- I don’t know what you guys think about this.

Male Speaker:

Scott, Rob.

Scott Page:

Yes, so the other -- the other example people give like his -- with the odd numbers is if you take a set of triangles that are two sided and you connect them to form a Mobius strip, you get something that’s one sided, and people argue that the one sidedness is emergent.  I think that goes on and off the Wikipedia emergence page, depending on -- [laughter] -- depending on how often Rob has been there, I think.  [laughter]

But I think there was a sense early on where emergence really had this sort of, you know, you know it when you see it property, and it was just like, you know, people would run these little simulations and something would pop up and then say there’s emergence.  And I think now we’ve moved to -- some people have these sort of statistical notions, and you saw Rob sort of -- 

[break in audio]

Male Speaker:

-- wine tasting, and we put vinegar in one, and we want it to not only -- it was a replication of the old Asch experiment on unequal lines.  We used unequal wines.  [laughter]  And -- but we, unlike Asch, we wanted them to not only give the wrong answer about the wines, but we wanted them to sanction the people who gave the right answer.  And what we found is that, indeed, when the sanctioning was public, that is to say when people could see me sanction, then I would criticize those who couldn’t see the emperor’s new clothes.  But when the sanctioning was private, people switched over and they praised the person who gave what they, in fact, knew to be the case.  So these things can be studied rigorously.  We can run experiments to test it, and it’s actually just a new way of thinking about it.  And I think it calls attention to the importance of understanding things like network structures and how those play a key role in the spread of these cultural pathogens.

Male Speaker:

One other -- let me give an analogy, then move forward from there.  When I was at Cal Tech, they had these things called stacks.  They had this thing called stack day.  One of the famous stacks, which is urban legend, I think, is that a car was supposedly rebuilt inside someone’s dorm room, sort of piece by piece.  In some sense, the same can be done here.  I mean, if you look at what are the core concepts of a complex system, you think about networks, heterogeneity, adaptation, interactions, epistasis, whatever you want to call it, and then multiple levels.  

With any one of these models, you can look at something like -- let’s take the model Josh gave up of disease spread.  If you have random mixing, that sort of assumes that everybody in the world randomly flies to O’Hare.  We randomly pick two people.  They fly to O’Hare, they meet, they breathe on each other, they fly back.  We randomly pick two others, they meet, they breathe on each other, they fly back.  It’s ridiculous, right?  Instead, people interact in cities, occasionally they, you know, fly to, you know, Amsterdam or Chicago or something.  So one thing you can do is you can sort of piece by piece assemble that car, you know, in your research group in a sense.  You can say, well, you know, why don’t we just sort of explore a little more ancient heterogeneity?  Or why don’t we put a network on this, or why don’t we introduce some adaptation, or why don’t we put a little bit of, you know, non-linear action in this model?  Everything’s sort of a linear feedback.  And by doing those things -- or why don’t we put it in a second level, sort of memes.  You know, as you -- I think a lot of times you can benefit a lot not by sort of going, you know, full bore complex systems, but by just including one of those pieces and just asking, you know, what do we get by adding that one piece?  And once they see the benefit of each of the pieces, then in some sense, you know, maybe they’ll drive the little car, who knows?

David Krakauer:

Can I make one -- here’s a -- it’s kind of -- it really isn’t flip, right, my remark.  I think the problem with science is maturity, okay?  And I think that, and I mean it in the following sense: you know, we know from language that there are critical periods, and you know, beyond a certain age it’s extremely difficult to acquire an additional language without having a terrible accent.  So I’ll probably preserve my accent even though my wife is an American and I’ll live here for quite a long time.  

And I think that one of the things that we haven’t said that’s negative about models is that they become incredible crutches that people lean on for thinking.  And they become a kind of substitute for thinking creatively often, and in fact, one of the things that’s been shocking to me in my brief career has been how people publish the same paper year in, year out, with exactly the same mathematics year in, year out, with a little bit of different data.  And actually one of the nice things about being at SFI is you’re not really allowed to do that; it’s kind of an unwritten rule.  You know, you have to explore different kinds of theoretical frameworks.  And I think that that kind of fear and commitment and maybe cognitive inability to acquire new tool sets, I think, has a lot to do with why people resist this style of thinking.  Because it’s a kind of more adolescent theory.  It’s much more fun, actually.

Male Speaker:

You have the last word.

Jose Tapia:

Hi, my name is Jose Tapia [spelled phonetically], I teach here.  My background is in medicine and economics.  And I want to cite here two authors, a microbiologist and an economist, that I think quite relevant for the issues that are being discussed here.  The microbiologist was Rene Dubos, who wrote a book titled Man Adapting.  And the economist is Wesley Mitchell, who did a lot of research on business cycles.  Now, the problem with these two authors is that they were writing in the 1930s, 1940s.  They are long time dead.  

And why I am bringing all this up?  Well, one of the -- one of the examples that had been brought up here about that to talk about emergency, or emergent properties this morning.  Wesley Mitchell had the idea that the present economy is largely based on money.  So he referred to that type of economy as money economy.  But now money, as everybody who knows a little bit about history, is very old.  We know that there was no money in hunter and gather societies, but there was money in the Roman Empire and so on and so forth.  So we have the society and then something emerged, money.  

But then another thing emerged, which is a society that is very strongly based on money.  And this was not true six centuries ago, but is true from 150 or 250 or 300 years.  So we have here levels of emergency in a phenomenon.  Now, to look at it, we have to look at history.  Now, we can make an abstraction of this and to try to understand present society as if money do not exist and then we can build these models, assuming that there is no money, and what would happen between agents that are interacting without money?  Would that create the need for money and so on and so forth?  And in my view, this can create a lot of papers in some kind of discipline that could be called something like simplistic complexity, because it’s ignoring basic and major components of the real world.  And I think a basic -- a basic focus of science is to understand the real world, not abstracting the important things, but the things that are not important to understand it.  So I don’t know.  I just wanted to pose that and see what you say.

Male Speaker:

It might also be a four panelist response.  Somebody jump in.  You’ve scared them all with the question.  [laughter]

Male Speaker:

I think of models as a ways to think more rigorously and more carefully about the real world, but they’re not the real world.  And as long as we’re clear about that distinction, there shouldn’t be a problem.  My view -- the alternative to modeling is not the real world.  The alternative to modeling is thinking unrigorously about the world, about the real world.  So if I have a choice between thinking nonrigorously and just having lots of associations and spurious relations and supposed implications of a set of assumptions which just don’t follow.  And a model which has been tested for internal validity and shown to be valid, that is to say, we know that the -- that the conclusions do indeed follow, that these are indeed the implications of this set of assumptions, if that’s my choice, I pick the latter.  

Now, is it the same as the real world?  No.  But it’s a different way -- it’s a way of thinking about the real world that I prefer over its alternative.  As to -- and in many cases -- I think the point that was made earlier today, this morning, many of the most important theoretical breakthroughs do not occur on the basis of collecting empirical data, but it’s the reverse.  The theories generate the data collections.

Male Speaker:

Let me echo that, and also I think -- first of all, I appreciate what you say because it makes a lot of sense, and let me tell an anecdote.  Scott de Marchi’s here, but he -- in his book on computational models, he talks about this experiment that I used to run at the Sante Fe Institute summer school where I -- students write models of standing ovations.  And the economists’ models all looked exactly the same.  In each seat there was an economist and they looked around and they saw how many other people were standing up, and if that many stood up, then they’d stand up.  And real people, i.e. non-economists, had one different feature of their models.  They assumed that people went to the theater on dates.  There was actually someone next to them.  And the person next to them had sort of undue influence on their behavior, right?  

And so what this gets to sort of David’s point a little bit is that there a problem if we suddenly have this fetish of particular types of models; in the case of economists, representative agent models without social networks.  And we just hammer those through and apply them everywhere, because then we end up with models of people in an auditorium all alone, like, you know, 500 single people, all who went out to the theater on the same night, knowing no one else.  

At the same time, I think that there -- and this gets to Josh’s point about humility.  I think that we really gain a lot by each one of -- this experiment is in some sense really worthwhile because when 50 people each write down standing ovation models, they’re all different.  They all have different features and all have different sort of assumptions.  And some of them make a lot of sense, and when you program in a computer, they look like standing ovations.  Others, and my undergrads do this, you plug in their rules and you just get all these people -- it looks like popcorn, everyone just jumping all over the place.  [laughter]  And then they realize, “Wow, maybe that’s not how standing ovations work.”  And yet, without sort of in some sense doing the math or running the computation, we just don’t know how the logic flows, whether this is some -- even a simple systems dynamic thing with just boxes and arrows, or it’s a more complicated agent basting with dynamics.  And so your point’s well taken that we don’t want models of simplistic complexity that don’t make sense, leave out important stuff.  At the same time, we just gain so much in terms of rigor and understanding by coding in what we think we know and seeing that, in fact, what occurs isn’t what we thought.

Male Speaker:

Let me just conclude by saying that there is an active research program in macroeconomics today in [unintelligible] complexity that Wesley Clair Mitchell would be, I think, proud of.  I’ll talk to you about that [inaudible].

Male Speaker:

Let’s thank all our panelists and speakers.

[applause]

Male Speaker:

We’ll resume tomorrow at about 8:30.

[end of transcript]
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