Skip Navigation


CIT can broadcast your seminar, conference or meeting live to a world-wide audience over the Internet as a real-time streaming video. The event can be recorded and made available for viewers to watch at their convenience as an on-demand video or a downloadable file. CIT can also broadcast NIH-only or HHS-only content.

Why Parents Matter (Epigenetically): Genomic Imprinting in Health and Disease

Loading video...

516 Views  
   
Air date: Wednesday, January 6, 2016, 3:00:00 PM
Time displayed is Eastern Time, Washington DC Local
Views: Total views: 516, (219 Live, 297 On-demand)
Category: WALS - Wednesday Afternoon Lectures
Runtime: 00:59:09
Description: Wednesday Afternoon Lecture Series

Imprinted genes are expressed from a single parental allele and most reside in clusters that are located throughout the mammalian genome. The clusters typically contain an imprinting control region (ICR), which harbors allele-specific methylation and governs the imprinting of the entire domain. Although most imprinted clusters use long non-coding RNAs to regulate imprinted gene expression, a few are regulated by the transcriptional regulator CTCF and allele-specific insulator function. One such cluster harbors the H19 and Igf2 imprinted genes, and is controlled by an ICR that contains multiple CTCF binding sites. Gain of maternal methylation and loss of paternal hypermethylation of the H19/IGF2 ICR are associated with the human growth disorders Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, respectively. Using gene targeting and genome editing, Dr. Bartolomei's team has generated embryonic stem cells, induced pluripotent stem-cell lines and mice to study the mechanisms of imprinting for these imprinted loci and to model the epigenetic mutations in human syndromes. Her lab has also developed SNP-FISH to study the dynamics of allele-specific gene expression at the single cell level in cell lines and tissues with loss of imprinting. In addition, her lab has studied imprinting in animal models of assisted reproductive technologies (ART) and endocrine disrupting chemical exposures (EDCs). Both ART and EDCs are associated with the increased loss of imprinting of various genes and with DNA methylation aberrations. The effects are especially pronounced in the placenta where the regulation of multiple genes and DNA methylation of repetitive elements are perturbed and where morphological changes are evident.

For more information go to https://oir.nih.gov/wals
Debug: Show Debug
NLM Title: Why parents matter (epigenetically) : genomic imprinting in health and disease / Marisa Bartolomei.
Author: Bartolomei, Marisa.
National Institutes of Health (U.S.),
Publisher:
Abstract: (CIT): Imprinted genes are expressed from a single parental allele and most reside in clusters that are located throughout the mammalian genome. The clusters typically contain an imprinting control region (ICR), which harbors allele-specific methylation and governs the imprinting of the entire domain. Although most imprinted clusters use long non-coding RNAs to regulate imprinted gene expression, a few are regulated by the transcriptional regulator CTCF and allele-specific insulator function. One such cluster harbors the H19 and Igf2 imprinted genes, and is controlled by an ICR that contains multiple CTCF binding sites. Gain of maternal methylation and loss of paternal hypermethylation of the H19/IGF2 ICR are associated with the human growth disorders Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, respectively. Using gene targeting and genome editing, Dr. Bartolomei's team has generated embryonic stem cells, induced pluripotent stem-cell lines and mice to study the mechanisms of imprinting for these imprinted loci and to model the epigenetic mutations in human syndromes. Her lab has also developed SNP-FISH to study the dynamics of allele-specific gene expression at the single cell level in cell lines and tissues with loss of imprinting. In addition, her lab has studied imprinting in animal models of assisted reproductive technologies (ART) and endocrine disrupting chemical exposures (EDCs). Both ART and EDCs are associated with the increased loss of imprinting of various genes and with DNA methylation aberrations. The effects are especially pronounced in the placenta where the regulation of multiple genes and DNA methylation of repetitive elements are perturbed and where morphological changes are evident.
Subjects: DNA Methylation
Epigenomics
Genomic Imprinting
Publication Types: Lecture
Webcasts
Download: To download this event, select one of the available bitrates:
[64k]  [150k]  [240k]  [440k]  [740k]  [1040k]  [1240k]  [1440k]  [1840k]    How to download a Videocast
Caption Text: Download Caption File
NLM Classification: QU 475
NLM ID: 101676576
CIT Live ID: 17654
Permanent link: https://videocast.nih.gov/launch.asp?19412