## Single Cell Proteomics: A Challenge of Knowing Too Much.

#### Garry P. Nolan, Ph.D.

Stanford University Dept. of Microbiology & Immunology

#### The complex Signaling Phenotypes of Individual Cells

100110101 01010101



## **Early Single Cell Proteomics Innovators**



Len Herzenberg - - Argon laser flow sorter 1972 - placed an argon laser onto their sorter and successfully did high speed sorting - Coined the term Fluorescence Activated Cell Sorting (FACS)



**Mack Fulwyler** - Coulter Electronics manufactured the TPS-1 (Two parameter sorter) in 1975 which could measure forward scatter and fluorescence using a 35mW argon laser.



Howard Shapiro: Block instruments (1973-76) a series of multibeam flow cytometers that did differentials and multiple fluorescence excitation and emission.

Photo ©2000 – J.P. Robinson

#### **Multi-Color Flow Cytometry**

- Combines complex immunophenotypic analysis with functional analysis (intracellular biochemical events)
  - Detailed characterization of rare subsets (e.g., antigen-specific T cells)
  - Identify new subsets more specifically associated with mechanism and clinical parameters
- Largely unappreciated in much of molecular biology– 11 parallel assays (classic) is NOT the same as 11 simultaneous measurements.

# Single Cell Analysis in Drug Discovery



# From phospho-molecular profiling to Signaling pathways



Signatimg Ightpwtadata

#### Single Cell Standards Issues to consider

- # of simultaneous parameters to measure
- Absolute vs relative (qualitative vs quantitative)
- Baseline fluorescence standards (quantitative)
- How does one FIND an informational 'blob' in n-space (feature extraction)?
- How does one represent such a 20-dimensional object?
- How does one apply such knowledge from flow cytometry to 3D imaging (confocal, other cytometry)?
- How does one deal with solid tissue slice (tissue biopsies)
- SOPs for sample handling?

#### Why use Single Cells to Measure Cell events?

#### • Traditional

#### • Flow Cytometry



- Population analysis
- Homogeneous cell type: sorting, depletion



- <u>Single</u> cell analysis
- <u>Heterogeneous</u> populations can be separated via surface

#### **Pulses to Numbers**



• Advantages of new digital processing over Analog:

- Highly accurate (acquisition time enhanced)
- Can correct for dye spillover (matrix algebra for n colors)
- Obtain pulse geometry metrics and time
- Perform statistics on raw linear data



## Stuff that impacts sensitivity





#### **Multi-color FACS: Spectral Overlap**



## **Stanford Biexponential Display (Logicle)**



#### **Biexponential**





## Intracellular Flow Cytometry Technique



Intracellular Stain



- 2% paraformaldehyde for 10-15 min.
- 95% MeOH or Saponin for 5-10 min (cell type dependent).
- Primary conjugated antibodies to phospho-epitopes in PBS + 1% BSA.



## **Increasing Phospho Ab Repertoire**

- Phospho Antibodies
- p38 MAPK  $\overline{}$
- JNK, cJun  $\overline{}$
- AKT, PIP2, PIP3,  $\overline{}$
- PKC $\alpha/\beta/\theta/\delta$ , Rsk  $\overline{}$
- Raf, Mek, ERK, ELK  $\overline{}$
- Rsk, Creb,  $\overline{}$
- STAT1,3,5,6, c-Src  $\overline{}$
- CREB, cJUN, IKK $\alpha$  $\mathbf{O}$
- p53 s15, s20 s37, s392  $\overline{}$
- Pyk2, Shc, Fak, src  $\overline{}$
- Slp76, Zap70, Syk, Lat, Vav,  $\bigcirc$
- Lck, PLC $\gamma$  $\overline{}$
- **Beta-integrins**  $\overline{}$

Every new antibody increases the potential of discovering entirely new correlations for disease processes (targets and diagnostics) as well as utility in drug design and development

#### Phospho Antibodies

- EGFR  $\overline{}$
- Pkg PDGFR  $\overline{}$ RB
- cKit NFAT
- NFKB VEGFR •
- PKA

Caveolin Paxillin

#### Stimulation of Murine Splenocytes Dendritic Cell Subpopulation Analysis (B220<sup>-</sup> CD8<sup>-</sup> CD11c<sup>+</sup> )



Collect Splenic cells 10 Minutes postinjection of IFNγ (in vivo)

Read out Stat1 transcription factor activation via its phosphorylation

#### **Murine Splenocytes - Gating**



Matt Hale, Nolan Lab

## Phospho-FACS allows for Pharmacodymics in Vivo

#### Cell Subset Specific IFN<sub>γ</sub> Sensitivity across a titration



## Leukemia (AML) Classification by Differentiation



Could provoking cells to respond to external stimuli, such as cytokines, differentiate AML blasts with altered signal transduction networks?

#### Model: Cytokine Response of U937 Cells



Phosphorylation of Indicated Target Protein

-3 Fold No Change +3 Fold Phosphorylation Scale log<sub>2</sub> [ stimulated / unstimulated ]

#### Irish et al, Cell, 2004

#### **Cytokine Responses of Normal and Tumor Cells**



Irish et al, Cell, 2004

#### **Clustering of Biosignature, Clinical Significance**



Irish et al, Cell, 2004

## **SC-NP** (standard chemotherapy responses)

#### SC-NP Composite Profile



## SC-P2 (Flt3 mutant, chemotherapy insensitive)

#### SC-P2 Composite Profile



# Array Overview of Lymphoma Signaling



New Approaches To Representing Single Cell Data Present New Problems, but suggest Interesting possibilities







## What is a Bayesian Network?

![](_page_25_Figure_1.jpeg)

+ A Mathematical (probabilistic) description of the connections in the graph ...

# **T-Lymphocyte Data**

![](_page_26_Figure_1.jpeg)

- Primary human T-Cells
- 9 conditions
  - (6 Specific interventions)

- 9 phosphoproteins, 2 phospolipids
- 600 cells per condition
  - 5400 data-points

# **T-Lymphocyte Data**

![](_page_27_Figure_1.jpeg)

# A T cell signaling map *ab initio* from multiparameter data by Bayesian Inference.

![](_page_28_Figure_1.jpeg)

## Interventions are Required for Directionality

![](_page_29_Figure_1.jpeg)

|             | Lacking<br>Intervention<br>data | Complete<br>Dataset |  |
|-------------|---------------------------------|---------------------|--|
| Expected    | 7/10                            | 14/17               |  |
| Reported    | 1/10                            | 2/17                |  |
| Reversed    | N/A                             | 1                   |  |
| Unexplained | 2                               | 1                   |  |
| Missed      | 11                              | 4                   |  |

Dataset: 1200 samples:

- 2 conditions
- no interventions

# Simulated Westerns Diminish Network Integrity

![](_page_30_Figure_1.jpeg)

|             | "Western<br>blot" | Complete<br>Dataset |
|-------------|-------------------|---------------------|
| Expected    | 6/16              | 14/17               |
| Reported    | 1/16              | 2/17                |
| Reversed    | 3 1               |                     |
| Unexplained | 8                 | 1                   |
| Missed      | 12                | 4                   |

Simulated western blot: 420 samples:

- 14 conditions
- Each point average of 20 random cells

#### **Huge Problem with complex instrumentation**

- Setting up the machine to ensure valid output.
- Setting up complex experiments in an automated fashion.
- 'Forcing' students/technical staff to conform.

#### FacsXpert\* and the Libris DataStore

Designed to help researchers:

- Cope with this complexity when designing and executing FACS experiments
- Comply and with demanding requirements for long-term recoverability of FACS and other large data sets (Collaborative Electronic Notebook standards Association (CENSA)), US 21 CFAR part 11

#### \*a knowledge-based system, Herzenberg laboratory (sold by ScienceXperts, Inc.)

#### Start by choosing a new/existing protocol, specify

Study and experiment name, Subject species, Cell source (tissue)

| My protocol knowled | lge \Reagent lot knowl | edge \             |                            |              |
|---------------------|------------------------|--------------------|----------------------------|--------------|
|                     | ✓ Choose<br>protocol   | Specify stain sets | Specify<br>dilutions/steps | Pla<br>pipet |
| '⊨ ⊨' ∢             |                        |                    |                            |              |

#### Take the individual through the experimental planning

![](_page_32_Picture_4.jpeg)

#### Carry out experiment, collect data, store, analyze

![](_page_32_Picture_6.jpeg)

# Important to validate instrument setup in an automated manner

![](_page_33_Figure_1.jpeg)

Antibody capture beads stained with 3 levels of an APC reagent

The transformed display shows aligned populations In the APC-Cy7 dimension

![](_page_33_Picture_4.jpeg)

APC Area

# Single Cells are an Unparalleled Information Resource... but...

- Common standards needed for instrument setup, runs.
- Automated experiment setup/protocols
  - intelligent notebooks
- Standards for representation of multi-D populations.
  - what is a population and what is the biological inference?
  - Cluster analysis
- Support (i.e. \$\$) for new visualization of multi-D

# **Acknowledgements**

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

Jonathan Irish

Peter Krutzik

Omar Perez Ma

Matt Hale

Nolan Lab / Stanford University NHLBI: National Proteomics Center *Kinase Signaling and IC FACS Group* 

Bjørn Tore Gjertsen Nina Ånensen Randi Hovland Øystein Bruserud

Collaborators in Bergen, Norway

Karen Sachs Dana Pe'er (Harvard) Douglas Lauffenberger *MIT* 

- Bob Hoffman
- Dave Parks
- Marty Bigos
- Wayne Moore
- Diether Recktenwald
- Joe Trotter
- BD-BioSciences

# **Publications**

- Perez O.D. et al. (2002). Immunity. 16:51-65.
- Perez O.D. and Nolan G.P. (2002) Nature Biotechnology 20:155-162.
- Krutzik PO, Irish J, Nolan GP, and Perez OD, Analysis of Phospho-Proteins by Flow Cytometry: Techniques and Clinical Applications. Clinical Immunology Reviews, 2003, December.
- Perez OD and Nolan GP. Flow cytometric analysis of kinase signaling cascades. Methods in Flow Cytometry. Humana Press. Editor: Howard Shapiro, 2004, March.
- Krutzik PO and Nolan GP. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry, 2003, September
- Perez, OD and Nolan et al. LFA-1 lowers of T-cell activation thresholds and signaling through cytohesin-1 and JAB-1. Nature Immunology, 2003, November.
- Irish, J. and Nolan et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. **Cell**, August, 2004.

## http://proteomics.stanford.edu http://www.stanford.edu/group/nolan