Standards in Proteomics Protein-Protein Interactions

Christopher W.V. Hogue, Ph.D. Scientist, Samuel Lunenfeld Research Inst. Mount Sinai Hospital Associate Professor, Dept. of Biochemistry, U. of Toronto

Outline

 OECD Declaration – Data Access/Archiving About Blueprint and BIND On Standards, Components and Systems Reverse Salients Communities User Behavior OntoGlyphs - Visualizing Complex Information BIND PICKS – Scoring Yeast Interactions New BIND Record Types

Organisation for Economic Co-operation and Development (oecd.org)

DECLARATION ON ACCESS TO RESEARCH DATA FROM PUBLIC FUNDING

adopted on 30 January 2004 in Paris

The governments (1) of Australia, Austria, Belgium, Canada, China, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Russian Federation, the Slovak Republic, the Republic of South Africa, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States

Declare their commitment to

- Work towards the establishment of access regimes for digital research data from public funding in accordance with the following objectives and principles:
- Openness
- Transparency
- Legal Conformity
- Formal Responsibility
- Professionalism
- IP Protection
- Interoperability
- Quality and Security
- Efficiency
- Accountability

Q13. Archive? Form? Where?

 OECD Declaration in Canada was disseminated top-down to the granting agencies in Nov from the government. Mandate to sort out the problem of archiving all scientific research data. Timeline in 5 years – inter-agency coordination required.

A tea cup in a rainstorm...

- 2000 elemental observations (facts) about molecular assembly (interactions) published in the literature every month.
- By 1965 standards 10 textbooks full of figures, descriptions, mechanisms every year
- Estimate 200,000 facts sitting in the literature on library shelves, not validated, not useable.
- Blueprint's mandate is to capture this information in a machine readable database called BIND.

The Blueprint Initiative

 Develop, curate and maintain the Biomolecular Interaction Network Database (BIND) and related tools

 Carry out bioinformatics research in support of our vision.

blueprint.org

The Blueprint Initiative

Blueprint

Search

BIND

The Blueprint Initiative was established in 1999 as a resource for biomolecular data. Through public databases and other software, Blueprint collects and distributes information to everyone with an internet connection.

2004/11/04

News

About

New dataset imported into BIND more ...

2004/09/22

PSI Level 2 Formatted BIND Records on FTP Site more..

2004/09/20

Blueprint Initiative Bridges Genome and Interaction Worlds more..

LAUNCH SERVICE	
Select a Service 👤	

Exhibits

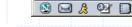
Research

MOUNT

SINAI HOSPITAL

Help

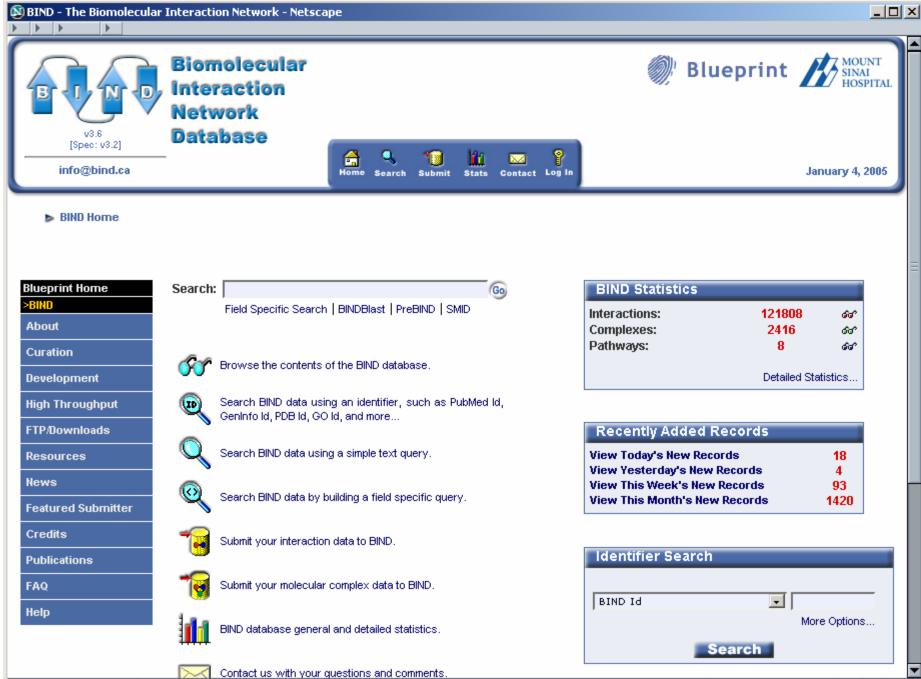
Jobs


Policies

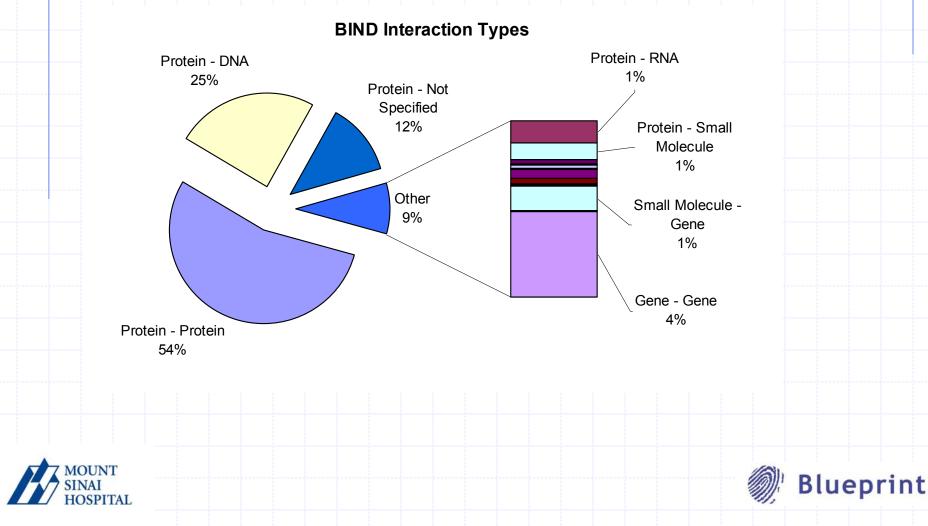
Products

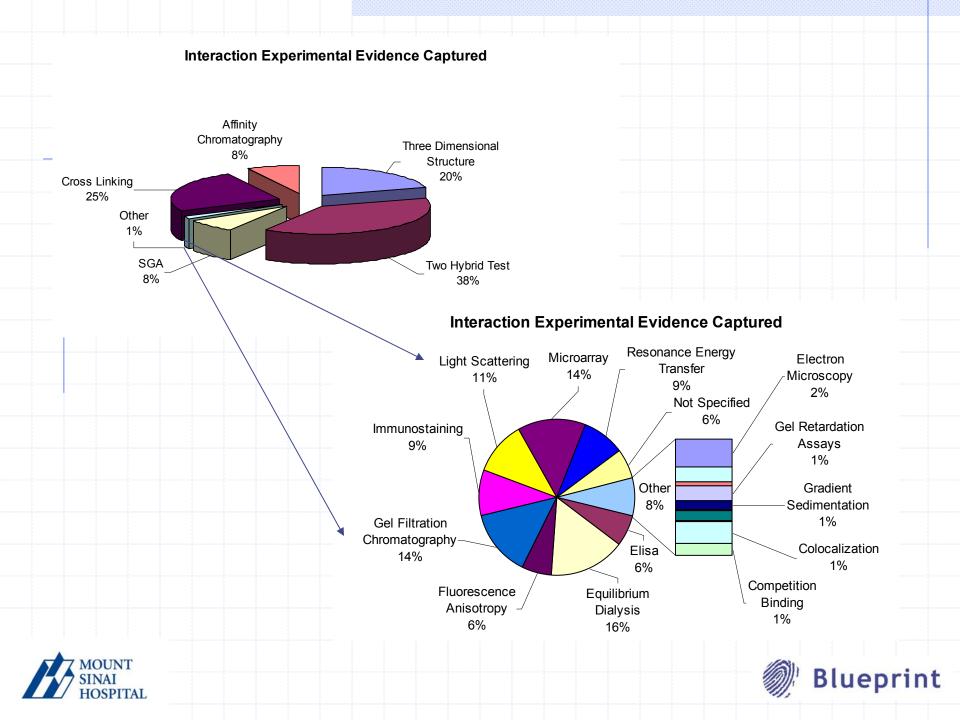
Services

Contact Us


SeqHound

======


Connecting to www.bind.ca...


🖂 🤱

Q2

=II- 🕫 🖆

BIND stores molecular interaction data...

Standards in Proteomics?

Software Systems Components (OSI Layers...)

- Human Interfaces
- Application Programming Interfaces
- Communications Protocols
- Content Structure
- Database (ODBC/JDBC compliant MySQL)
- Document Structures (XML)
- Architectures (Compatible orchestration of the above)
- Platforms (Runs the above: Windows, Linux, Unix)

What is in a "Standard" A Historical Perspective

- Standards emerge from successful systems.
 Which one is "the standard" The light bulb or the electrical grid?
- Lamps were the original killer app.
 - (bye-bye candles, gas lamps, oil lamps)
 - Other Apps: Motors, Heaters, Toasters
 - Unexpected Apps: radio, TV, transformers, computers, rechargables
- Entire "systems" become standards via adhoc and popular use – snowball effect.

Emergence and evolution of technological systems...

- Systems emerge across broad frontiers
 - Lots of small inventions are responsible for emerging techologies.
- Portions of the frontier that are held back become the focus of intense innovation
 - Called a "reverse salient" by students of technology
 - An inadequately functioning or accessible component in a complex system of of components
 - Opportunities for invention and replacement

Reverse Salient – AC/DC Example

- Edison's DC standard lit up Wall Street in Manhattan
- High-level buy-in for DC.
- AC was too complicated, could kill a person!
- Edison's DC system only worked over short-range.
- This flaw is the "reverse salient".

- Westinghouse/Stanley/Tesla saw the flaw in this standard
- AC technology raced to fill the gap
- Light bulbs work with both AC or DC.
- Motors required re-invention
- E.S. Rogers "batteryless" radio

Reverse Salient – AC/DC Example

- Edison's DC standard lit up Wall Street in Manhattan
- High-level buy-in for DC.
- AC was too complicated, could kill a person!
- Edison's DC system only worked over short-range.
- This flaw is the "reverse salient".
- Result: Cars, Battery based devices emerged with DC.

- Westinghouse/Stanley/Tesla saw the flaw in this standard
- AC technology raced to fill the gap
- Light bulbs work with both AC or DC.
- Motors required re-invention
- E.S. Rogers "batteryless" radio
- Result: The electrical Grid emerged with AC.

NOT A WINNER-TAKE-ALL RESULT!

Reverse Salient Attitudes

What holds us back?

- Oversights (didn't think of that!).
- Shortsightedness (won't ever need that!).
- Inability (can't do it!)
- Stubbornness (won't do it!)
- Prescriptivism (do it like this!)
- Nationalism, Continentalism, Colonialism
 - (because that's the way we do it here!)
 - 110 vs 220

Q1. Communities – who matters?

A1. What Standard? What community?

- Database Communities
 - IMEX (BIND/DIP/INTACT/MINT/MIPS)
 - BioPAX (pathway databases)
 - SBML (>70 software systems collaborating)
 - Cytoscape (collaborating interface developers)
 - NCBI/Blueprint (architecture)
 - Model Organism Databases (GMOD architecture)
- Journals and Editors
- Scientific Societies (HUPO)
- Member and Non-member Scientists

Q7. Integrate/Synergize

Identify the communities.

- Recognize that communities are disjoint.
- Require funded efforts to show their efforts to collaborate with and integrate across the spectrum of identified communities.

Q3? Standard Improvement?

- Service all communities effectively with a whole system.
- Trive innovation more through use.
- Gain and effectively incorporate user critique.
- Understand user needs, behaviors.

User Behavior

The problem of too much choice.

 (M. Lepper @Stanford and S. Iyengar @Columbia)

 Two tables in a supermarket:

 24 jars of jam vs 6 jars of jam.
 3% vs 30%

 Choice frustration.

User Behavior

- The problem of too much choice.
 - (M. Lepper @Stanford and S. Iyengar @Columbia)
- Two tables in a supermarket:
 - 24 jars of jam vs 6 jars of jam.
 - 3% vs 30%
- Choice frustration.
- Leads to incrementalism
- Sential user criticism is withdrawn.
 - Can't Debug This jam is a little bitter compared to
 - the other 6?
 - the other 26?
 - A whole lot of bad jam that nobody wants to buy...

Q4? Main Problems?

Standards Fatigue

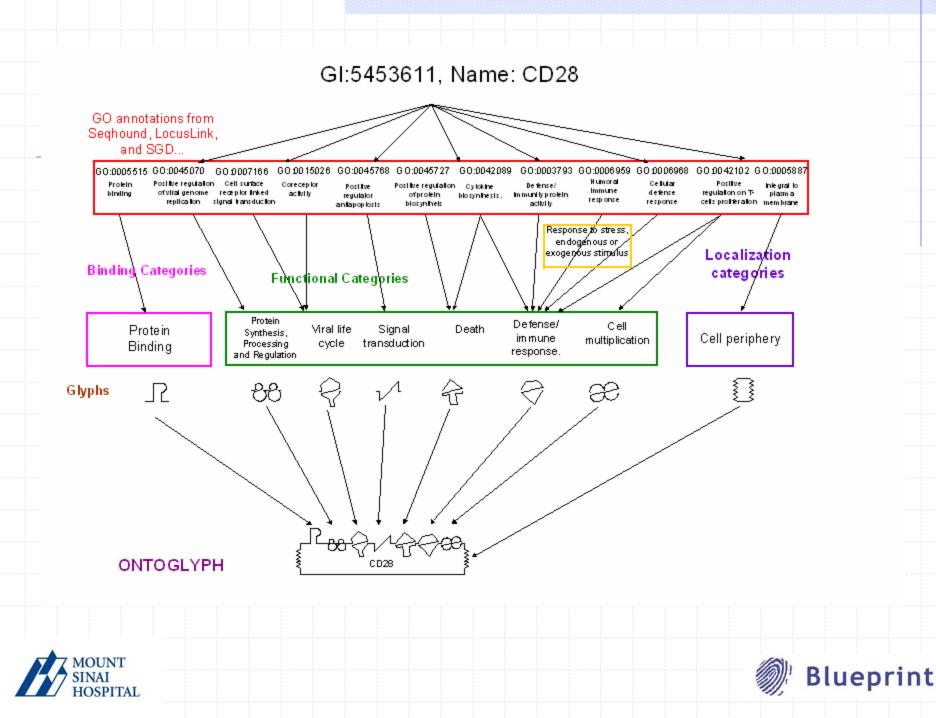
- Interactions/Pathways since NIH meeting in Nov 1999.
 Efforts are still not integrated (PSI/IMEX and BIOPAX).
- Data Standards are not an effective goal to achieve results in a timely way
- Information Systems are better goals.
- Wet Lab Scientists are busy people who are (excuse me) trying to write papers.
- Ongoing wishful thinking about latest new technology (the semantic web will fix everything!)

Q8. Proteomic Dictionary (semantics)

 Isn't that what Gene Ontology is – a collection of terms about proteins?

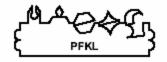
>17,000 terms – ½ the size of a pocket dictionary.

Structured data curation vs termtagging. Both are required.



OntoGlyphs

A graphical language Derived from Gene Ontology annotation The most-used terms/categories Simpler – Fewer Choices Summarize Long, long lists of data results – like query "cancer"



ONTOGLYPHS

Symbols to display protein attributes schematically. A collection of glyphs consisting of 34 functional, 25 binding and 24 location categories populated with Gene Ontology (GO) terms.

FUNCTIONAL CATEGORIES

Category	Glyph
Alcohol & aromatic compound metabolism/transport	G
Behaviour	B
Binding activity	
Biomembranes: organization and basic functions	22

Carbohydrate metabolism/transport	9
Cell communication	ß
Cell motility and structural activity	R
Cell multiplication	æ
Cell physiology	æ
Cellular organization/biogenesis	8
Coenzymes vitamin & hormone metabolism/transport	Ś
Death	÷
Defence/immune response	Θ
Development	Ð
DNA metabolism	5 <u>7</u> 3
Energy production/conversion	\Diamond
General metabolism	聞
General physiological processes	쓩
General transport	T

lon transport	夻
Lipid metabolism/transport	Ð
Organic & amino acids & derivatives & amine metabolism/transport	273 773
Pathogenesis & toxin activity	딿
Phosphorus metabolism	ନ
Protein degradation	
Protein metabolism	臣
Protein modification	B
Protein Synthesis, Processing, and Regulation	පීප
Protein transport	문
Response to stress endogenous or exogenous stimulus	£
RNA & other nucleic acids metabolism and transport	÷
Signal transduction	\checkmark
Transcription	뙍
Viral life cycle	Θ

BINDING CATEGORIES

Category	Glyph
Adenyl nucleotide binding	ŝ
Antigen binding	£
ATP binding	ዾ
Calcium ion binding	솠
Calmodulin binding	<u></u>
Carbohydrate binding	Л
Cytokine binding	3
Cytoskeletal protein binding	Л
Damage DNA binding	M
DNA binding	M
Double stranded DNA binding	n
Guanyl nucleotide binding	ለ
Lipid binding	£
Metal ion binding	ß
mRNA binding	n
Nucleic acid binding	ſ٦
Nucleotide binding	ऽ^र

Oxygen binding	J۵
Protein binding	R
Purine nucleotide binding	A
Receptor binding	52
RNA binding	R
Single stranded DNA binding	М
Transcription factor binding	52
Transition metal ions binding	JN

SUB-CELLULAR LOCALIZATION CATEGORIES

Category	Glyph
Actin cytoskeleton	0
Axon or dendrite	*]*
Biological membrane	纾
Cell periphery	
Cytoplasm	8
Cytoplasmic vesicle	£
Endoplasmic reticulum	

Endosome	\odot
Extracellular /cell surface	Ĩ
Flagellum /cilium	₽
Golgi apparatus	and Ling
Lipid particle	8
Microtubule cytoskeleton	8
Mitochondrion	C
Nuclear periphery	\circ
Nucleolus	0
Nucleus	53
Peroxisome	ഹ്ന
Plastid	8
Protoplasm	0
Ribonucleoprotein complex	ዏ
Site of polarized growth.	\heartsuit
Vacuole	8
Virion provirus.	ŝ

Results - Cancer query – interactions only – restricted to BIND-metazoa + MGI divisions

Single-Line OntoGlyphs now appear on BIND search results...

		1 2 3 4 - 43		
		Skip To Page: 1	(6)	
4 Records Found.				, as of Wednesday, 6 Oct 2004 16:45:10 ED
nteraction 172037 Bat3	₹₹₽₽₽₽₽	Amel×	ĭn8⇔	Mus musculus
nteraction 172003 Msh3	i a m æ # F	Msh6	𝗚𝔅⊕♥₩₽	Mus musculus
nteraction 173251 Case3	ξ≰φ J2 争	Stau1	¢ır≑	Mus musculus
nteraction 173306 Gok	€AR £00	Brms1	88	Mus musculus
nteraction 171915 Cık	⟨.R.æ.≁	Bear1	лÐ	Mus musculus
nteraction 172191 Brca2	{\$IRMæ8i∰£	Rad51	\$дмпле#Я	Mus musculus
nteraction 171891 Bap1	IR OB BB	BRCA1	х і ≴лмлм∞8∂∂	Mus musculus, Homo Sapiens
nteraction 180101 Bad	€r90000	Unknown		Mus musculus
nteraction 180102 Unknow	wn	PKAc	€IAR♥₿	Mus musculus
nteraction 180103 Unkno	wn	Gk	€AR£00	Mus musculus
nteraction 180104 Unknow	WD	WAVE-1	《重卫品劣》品	Mus musculus

Any list of genes can be converted into 3 lines of ontoglyphs. BIND query, BLAST output, microarray data...

Search terms: cancer

47 33 31 30 29 24 19 19 13 9 6 6 5 5 4 3 3 3 3 3 2 2 2 2 1 1 1 1 1 binding пагимилимислани 56 46 28 22 17 15 8 7 6 5 3 3 2 2 2 1 1 1 location & E & # X & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < & I < 98 36 14 11 10 8 5 5 3 3 3 3 2 1 1 1 Blueprint

Q6. Main Concerns to be Addressed

 The entire 300-year old publish-or-perish reward model.

Papers have to be stories, not observations (data)

 No reward for novel, unique data from isolated experiments

No capture into print or into databases

Q12. Should or can journals enforce submission of data?

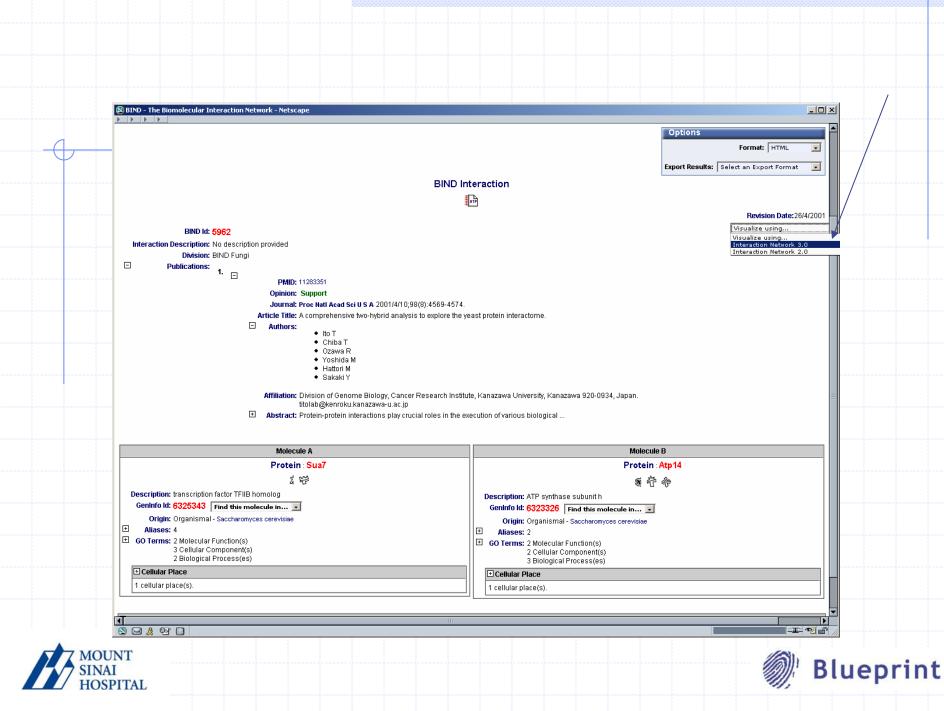
- BIND is working with 23 Journal titles currently including Science, NPG, Cell Press, NRC Press on pre and post-publication capture of interactions. We are working to extend these relationships with our IMEX partners.
- Yes, it can be done. The devil is in the details it requires very focused and respectful consideration of the need of journal editors, and manuscript submitters. It needs trained curators.
- No scientist wants to have to make an XML document in addition to their paper. Training required is a large burden.
 Tim Hughes MIAME frustration echoed by journal editors.
- BIND curators structure the data for the submitters, not just tag it with semantic terms. BIND data is intended to be computable in the long-term, justifying the effort.
 Blueprint

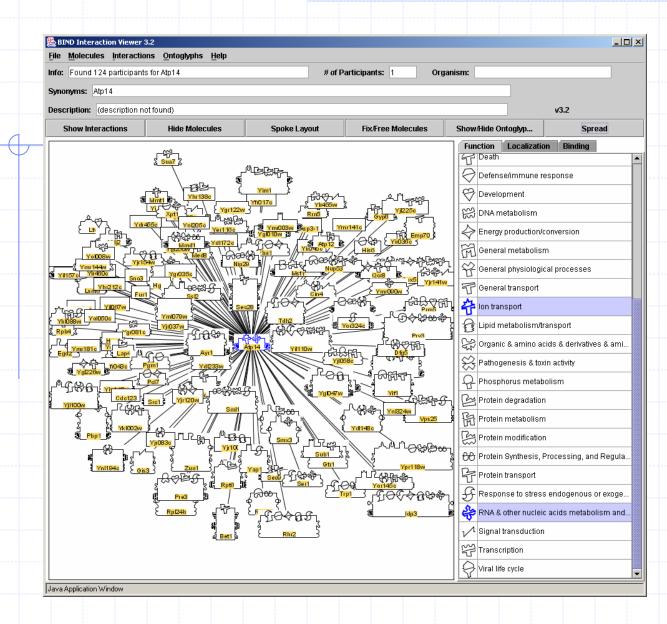
Data Archiving vs Data Analysis

Effort is not balanced

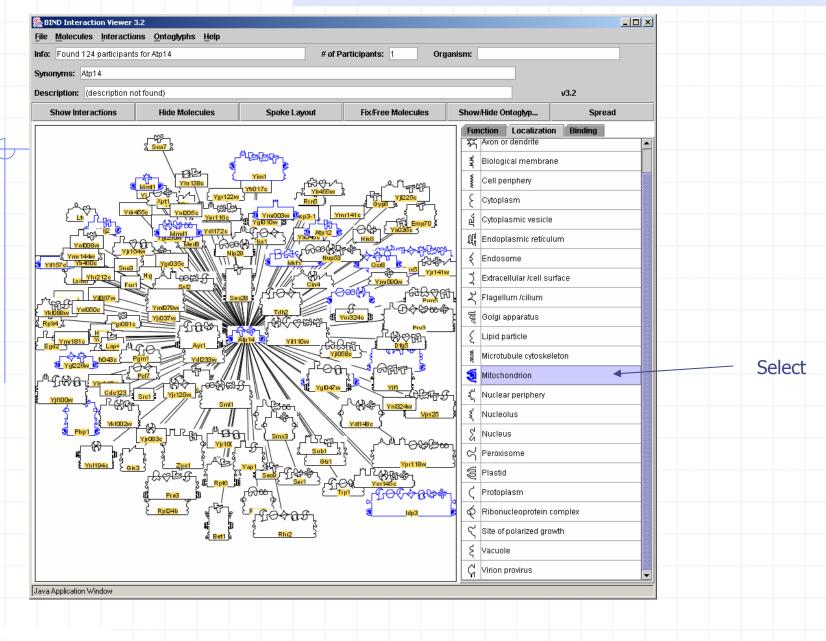
- Data Generation >> Data Analysis
- Data hoarding results...

Archivists are expected to behave like
 Librarians? (Archive the data)
 Literary Critics? (Evaluate/Rank the data)



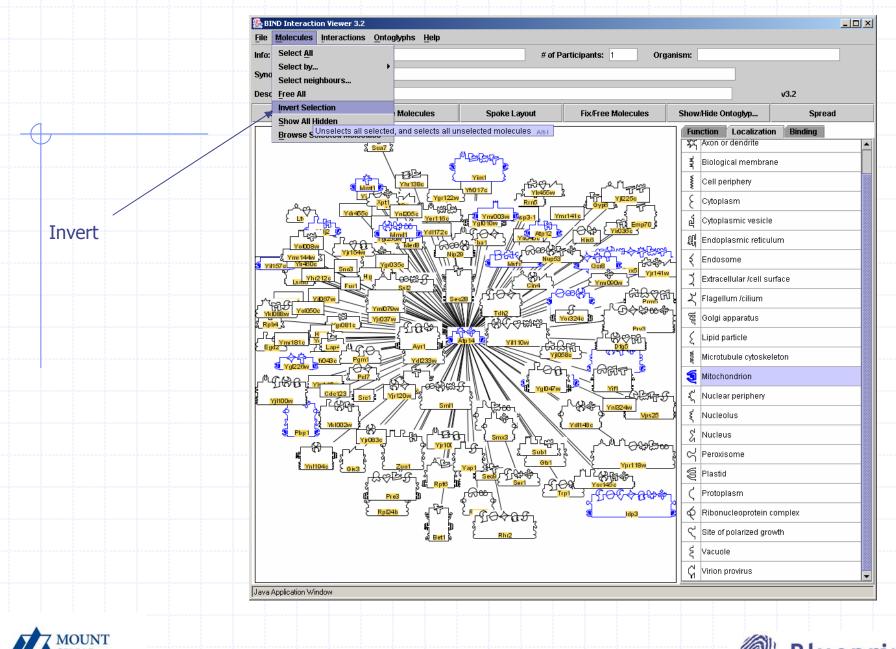

BIND Viewer Tool – atp14

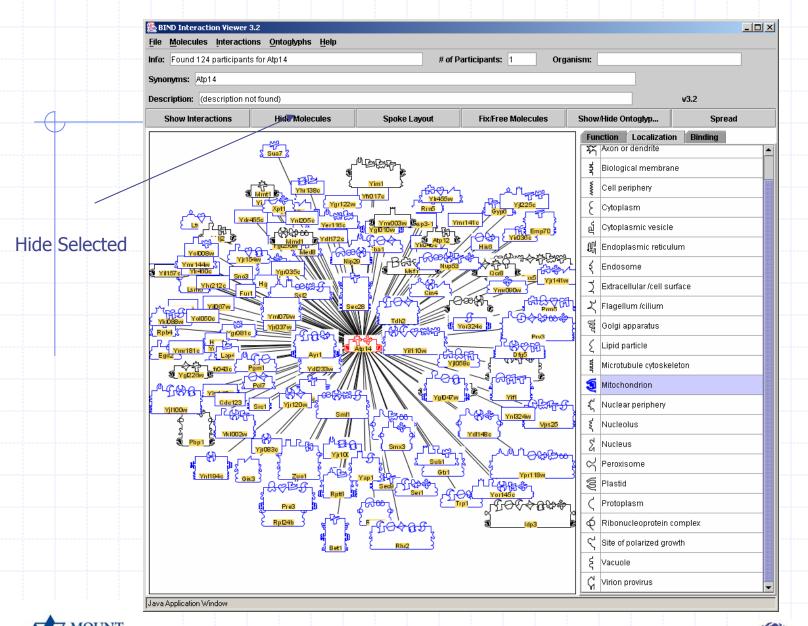
	RIND - The Rioppelecular	Interaction Network - Netscape		
Ψ		niteration Network - Netscape		
	vs.5 [Spec: vs.2] info@bind.ca	Biomolecular Interaction Network Database	Homo Search Submit Stats Contact	Blueprint MOUNT HOSPITAL November 4, 2004
	► Find BIND Record(s) -	Identifier Search		
	Identifier Search			Options View: Ontoglyph View
	GI Identifier Search Options	6323326		Export Results: Select an Export Format
		Search	đ	Redundant GIs
Many hits			1 2 3 4 5 6 7 🕨 Skip To Page: 1 💿	
	124 Records Found.			Search took 0.3 seconds, as of Thursday, 4 Nov 2004 21:15:06 EST
From	Interaction 5962	Sua7 ၌ 딸	Atp14 题 🕆 🌳	Saccharomyces cerevislae
yeast-	Interaction 4306	Atp14 > 한욱	॰ Yat1 a िि	Saccharomyces cerevisiae
two-	Interaction 4307	Atp14 電管용	9 Med8 날딸	Saccharomyces cerevisiae
hybrid	Interaction 4308	Atp14 题 🕆 🕀	¢ € Fad1 کې ا	Saccharomyces cerevisiae
	Interaction 4309	Atp14 重管会	। Ppp1a ह¢⊖िस	Saccharomyces cerevisiae
data	Interaction 4310	Atp14 重管会	e Ydi118w	Saccharomyces cerevisiae
	Interaction 4311	Atp14 包宁会	¢ Ydl148c ≰¢९.(Saccharomyces cerevisiae
	Interaction 4312	Atp14 > 10 문	e Ydl172c	Saccharomyces cerevisiae
	Interaction 4313	Atp14 >> 한욱	。 Ydl233w を着兄ぐ	· 딸 Saccharomyces cerevisiae
	Interaction 4314	Atp14 • 한욱	⇒ Trp1 ξ € ⊖	Saccharomyces cerevisiae
	Interaction 4315	Atp14 复宁鲁	• ^{Ydr319c} ♦£√	

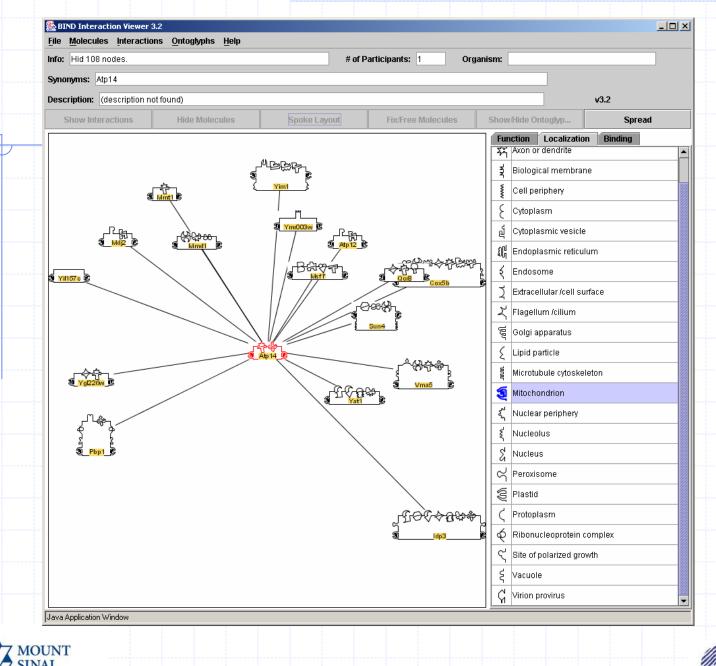


Too many...

Which molecules are co-localized With the atp14?







HOSPITAL

Voila Only co-localized Proteins!

Scoring High Throughput Interactions

• BIND PICKS – Protein Interaction Confidence Kernel Scores – SVM Classifier for Yeast.

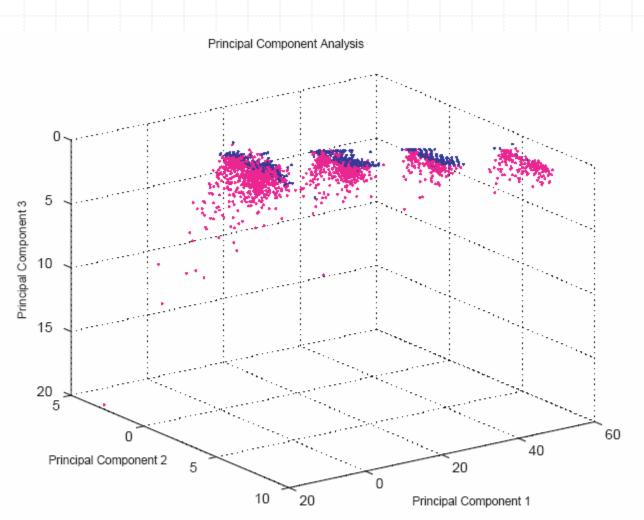

id	eigen0	eigen1	eigen2	eigen3	eigen4
num_pos_homolog_interactions	-0.002262	-0.374565	0.002792	-0.080864	-0.104295
num_homolog_interactions	-0.130207	0.533672	-0.52235	-0.223424	-0.561946
num_publications	-0.449107	-0.242582	-0.092797	-0.221117	0.090698
num_prebind_interactions	-0.258069	0.153001	-0.404787	-0.29502	0.661245
num_common_func_go	-0.455811	-0.166435	0.19885	0.194212	-0.12717
num_common_proc_go	-0.468985	-0.297926	0.064311	0.020879	-0.124666
num_common_com_go	-0.488325	-0.297634	0.172517	-0.009326	-0.082158
rna_binding_dom	-0.063564	0.654886	0.726009	-0.235928	0.074127
dna_binding_dom	-0.197966	0.339412	-0.152669	0.80965	0.154268
prox_func_go	0.841798	-0.095478	0.004688	0.017365	0.006152
prox_proc_go	0.837514	-0.100904	0.001824	0.012879	0.007085
prox_com_go	0.834984	-0.105447	0.001614	0.010693	0.006661
Eigen Values	3.10191	1.2869	1.06919	0.94241	0.84002

Table 12: Eigen vectors from PCA analysis

First five eigen vectors (principal components) and eigen values generated by the principal component analysis. Highlighted cells indicate variables that contribute most to the value of that principal component.

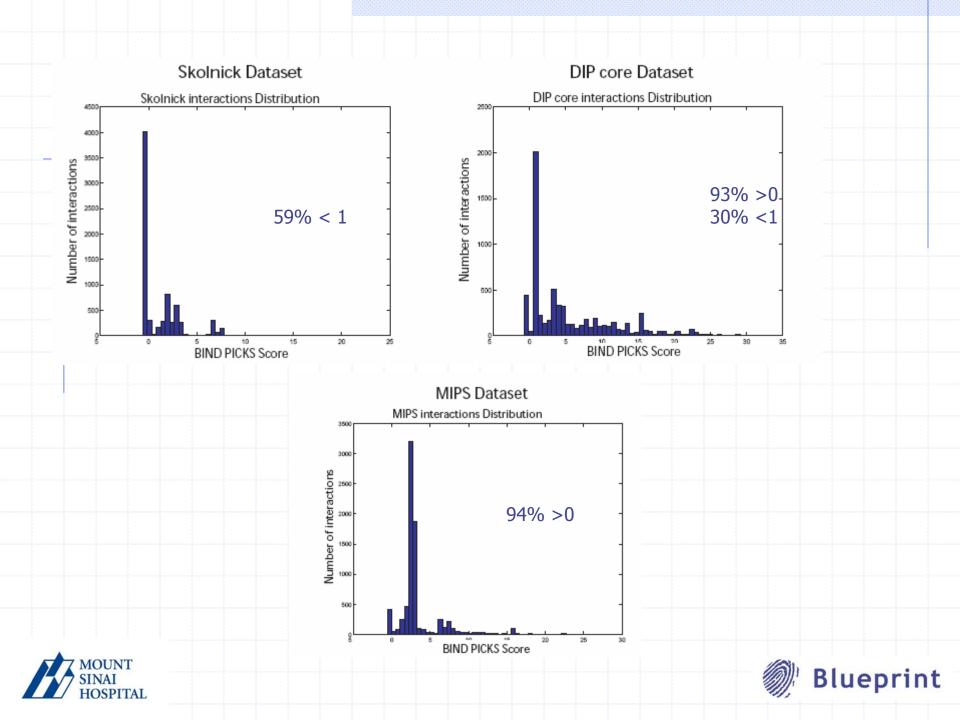
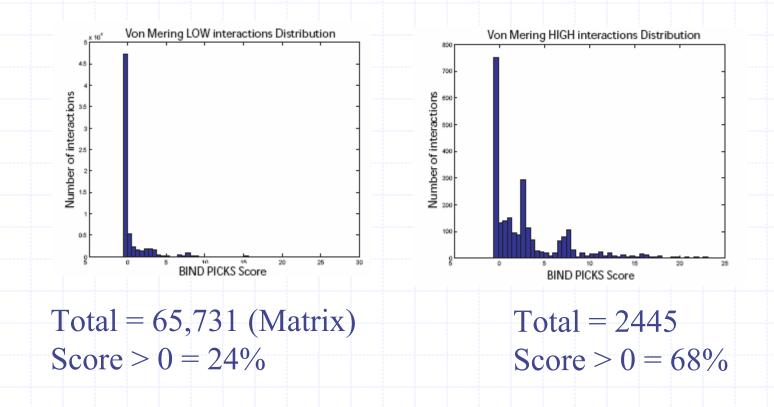
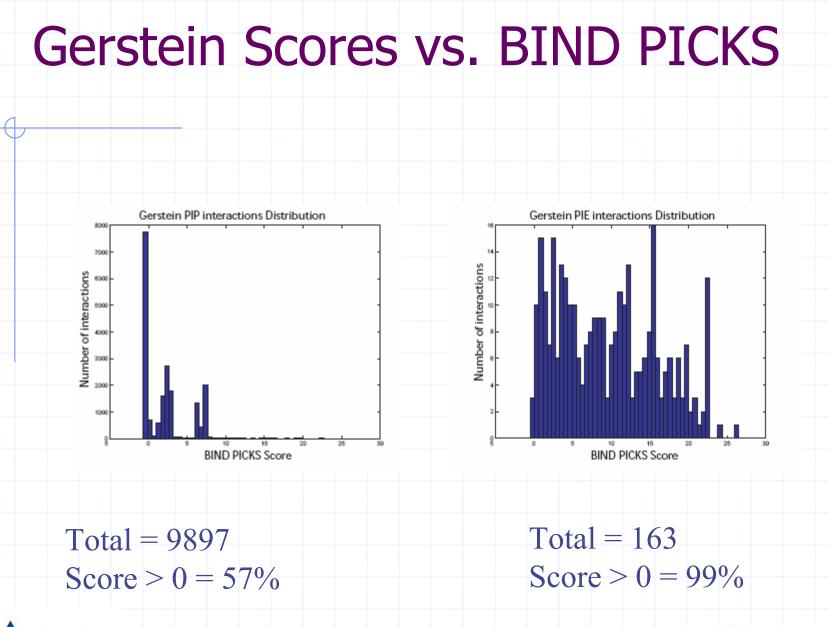


Figure 15: PCA

Positive subset (magenta) and negative subset (blue) were mapped onto to the first three principal components and graphed.



Von Mering Scores vs. BIND PICKS


- High supported by more than one method.
- Low Seen only once in one method.

Medium – 47%

Reliable "spoke" HTP data? 36% >1

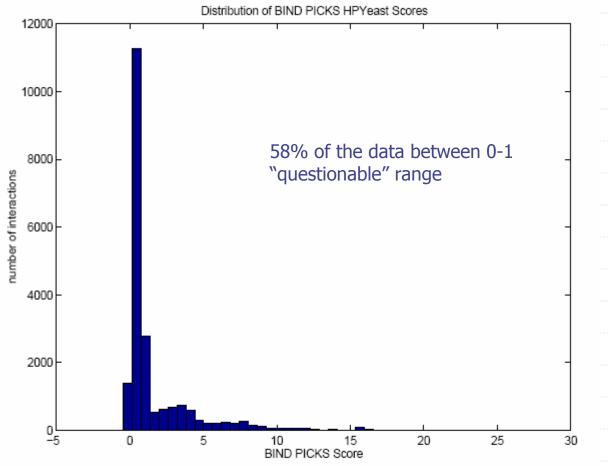
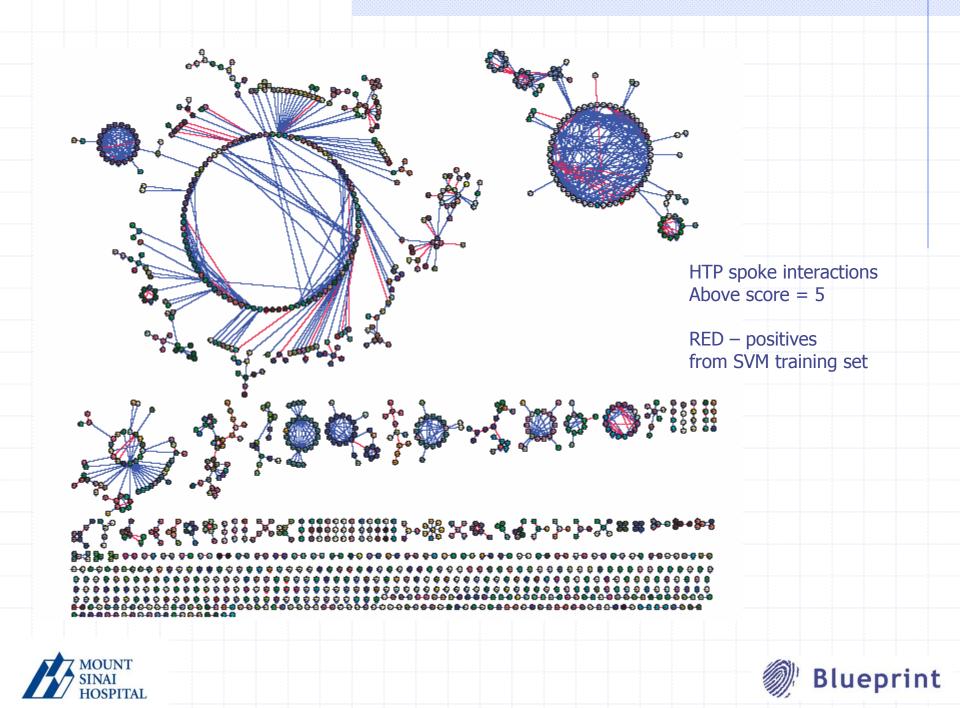



Figure 18: Distribution of BIND PICKS scores for HTP yeast interaction subset. The percentage of interactions that were identified as true interactions (score >1) was 36%.

BIND 4.0 – New Record Types Supporting Pathway/Proteomics Data

- 3 Types in use:
 - Interaction, Complex, Pathway
- Improvements to Complex, Pathway
 EcoCyc, aMaze, PID, STKE
- 2 high-level types being added in v4.0
 Reactant List
 Assembly List

New BIND record types

- Reactant List: In-vitro reagents required to elicit activity (e.g. Mg, ATP, etc).
 - Arises from an active collaboration with pathway dbs, data analysis and mapping, and efforts to integrate their data into the BIND query system.
- Assembly List: Observed List of Proteins/Genes (non-ratiometric!)
 - Currently unarchived data.
 - Phosphoproteomics, localization (e.g. human nucleolar proteins), transcription factor target proteins, concentration/copy number experiments.
 - May be suitable for "GeneString" conversion.

Staff and Contributors

The Biomolecular Interaction Network Database and Related Tools 2005 Update.

Alfarano¹ C, Andrade^{1,2}CE, Anthony¹ K, Bahroos¹ N, Bajec¹ M, Bantoft¹ K, Betel¹ D, Bobechko¹ B, Boutilier¹ K, Burgess¹ E, Buzadzija¹ K, Cavero¹ R, D'Abreo¹ C, Donaldson¹ I, Dorairajoo² D, Dumontier¹ MJ, Dumontier¹ MR, Earles¹ V, Farrall¹ R, Feldman¹ H, Garderman¹ E, Gong¹ Y, Gonzaga¹ R, Grytsan¹ V, Gryz¹ E, Gu¹ V, Haldorsen¹ E, Halupa¹ A, Haw¹ R, Hrvojic¹ A, Hurrell¹ L, Isserlin¹ R, Jack¹ F, Juma¹ F, Khan¹ A, Kon¹ T, Konopinsky¹ S, Le¹ V, Lee¹ E, Ling¹ S, Magidin¹ M, Moniakis¹ J, Montojo¹, J, Moore¹ S, Muskat¹ B, Ng¹ I, Paraiso¹ JP, Parker¹ B, Pintilie¹ G, Pirone¹ R, Salama¹ JJ, Sgro¹ S, Shan¹ T, Shu² Y, Siew² J, Skinner¹ D, Snyder¹ K, Stasiuk¹ R, Strumpf¹ D, Tuekam¹ B, Tao² S, Wang¹ Z, White¹ M, Willis¹ R, Wolting¹ C, Wong¹ S, Wrong¹ A, Xin² C, Yao¹ R, Yates² B, Zhang¹ S, Zheng¹ K, Pawson¹ T, Ouellette BFF³ and Hogue^{1,2,*} CWV

