Constitutional 9p22q translocation in a patient with melanoma, deafness and DNA repair deficiency disrupts *p14arf* and down-regulates *TBX1*

Xiaohui Tan¹, Sarah Anzick², Sikandar G. Khan¹, Takahiro Ueda^{1,3}, Gary Stone², John J. DiGiovanna^{1,4}, Deborah Tamura¹, Daniel Wattendorf⁵, Carmen Brewer⁶, Chris Zalewski⁶, Robert Walker², John A Butman⁷, Andrew Griffith⁶, Paul Meltzer², Paul Bergstresser⁸ and Kenneth H. Kraemer¹

¹DNA Repair Section, Dermatology Branch, CCR, NCI
²Genetics Branch, NCI
³Pharm/ Medical Device Agency, Tokyo, Japan
⁴ Derm, Brown Med School, Providence, RI
⁵Office of the Air Force Surgeon General
⁶Otolaryngology Br, NIDCD
⁷Radiology, CC
⁸Derm, Univ of Texas SW, Dallas, TX

DNA REPAIR DEFICIENCY, MELANOMA, DEAFNESS, AND CHROMOSOME 9p22q TRANSLOCATION – A NEW SYNDROME?

Patient DD129BE Sensorineural deafness, DiGeorge Syndrome / Ve. -cardio-facial Syndrome like features

CLINICAL EXAMINATION

Audiologic assessment

No measureable hearing bilaterally and absent vestibular reactivity

CT and MRI

Bilaterally symmetric cochlear hypoplasia and vestibular dysplasia with absence of the cochlear nerve.

KARYOTYPE ANALYSIS

Reciprocal translocation between the short arm of chromosome 9 and the long arm of chromosome 22

THE AIM

- 1. To map the chromosome breakpoints in cells from patient DD129BE
- 2. To develop a detailed molecular characterization of the candidate genes for his clinical syndrome of melanoma, defective DNA repair and deafness.

FISH analysis of t(9;22) with whole chromosome painting

Chromosome 9 Chromosome 22

normal 9

CHROMOSOME 9 and 22 PROBES ARE SPLIT BY THE TRANSLOCATION

FISH analysis of the translocation on chr9

CHROMOSOME 9 p16 PROBE IS SPLIT BY THE TRANSLOCATION

Array Comparative Genome Hybridization (aCGH)

BIVARIATE FLOW SORTING TO ISOLATE DERIVATIVE CHROMOSOMES

Derivative Chromosomes can be Separated By Bivariate Flow Sorting

Breakpoint Located Within CDKN2A Gene Using aCGH On Flow Sorted Derivative Chromosome 9

The CDKN2a (p16^{lnk4a}), CDKN2b (p15^{lnk4b}) Locus on Chromosome 9p21

Breakpoint on Chromosome 9 Interrupts p14/ARF Protein Leading to Melanoma

Laser Capture Microdissected Melanoma Tissue from patient DD129BE

Two UV-type Missense Mutations in Exon 1 β of p14arf Gene

Wild type

gCAG>CGG pQ57R gAGA>GGA pR62G

Knudson Model for Cancer

The melanoma in patient DD129BE may have resulted when one copy of *p14arf* was disrupted by the translocation followed by somatic mutations in the other copy.

DNA REPAIR DEFICIENCY IN PATIENT DD129BE FIBROBLASTS

Reduced HCR is not corrected by any of the known XP complementation groups

Increased HCR by Co-transfection with p14

DNA repair defect improved by transfection with p14 cDNA vector

FISH Analysis of DiGeorge Syndrome Critical Region on Chr22

562F10, 3090o16 and 586I18 PROBES ARE SPLIT BY TRANSLOCATION

Array CGH On Flow Sorted Derivative 22

ISOLATION OF TRANSLOCATION JUNCTION FROM Derivative 9 BY PCR

Breakpoint Junction is present only in cells from patient DD129BE

Junction Fragment Sequences of Der9

TCCTTACATTATTGCTTTTCTAAATTAAAGGGATGCATGGAATTATTCCT CCATTGCCTTTGCCTTCAAATAATTATCTATTGCACCCAACATCCTATTC TAGAACTCATCTATG AAGGCTT AACACAGCTGT ACCTGGG AGCTCCATT A CAGGGCATATATCTCGCTCTCATAAGCTACTTCCTAAGGAATTCTCTTTA ATTATGGG AGCTTTTCC AG ACTCTGA AATCTTTTTTCCTGG TA AC AC A A **GTGTGAGGTGTCATTTATCAGAATGCATCACCCCAGTCTTCCCTCAA** ATGATTACTGTAGGCTCCACTCAAGAGCTCATCCCAGTTCAAGACCACCT ● C # # 1 # # 1 # # 1 # # 1 # 1 # C # # 1 # # 1 # # 1 # # 1 # # 1 # # 1 # # 1 # 7 # # 1 # # 1 # # 1 # # 1 # # 1 erenananananacerenanananananacerenananananan <u>enenananananananakkenenanananananakanenanana</u> GAACTGGGATGAGCTCTTGAGTGGAGCCTACAGTAATCATTTGAGGAGGG AAGACTGGGGTGATGCATTCTGATAAATGACACCTCACACTTGTGTTACC AGGAAAAAAGATTTCAGAGTCTGGAAAAGCTCCCATAATTAAAGAGAAT TCCTTAGGAAGTAGCTTATGAGAGCGAGATATAT GCCCTGTAATGGAGC TCCCAGGTACAGCTGTGTTAAGCCTTCATAGATGAGTTCTAGAATAGGAT GTTGGGTGCAATAGATAATTATTTGAAGGCAAAGGCAATGGAGGAATAAT

TCCTTACATTATTGCTTTTCTAAATTAAAGGGATGCATGGAATTATTCCT **CCATTGCCTTTGCCTTCAAATAATTATCTATTGCACCCAACATCCTATTC** TAGAACTCATCTATG AAGGCTT AACACAGCTGT ACCTGGG AGCTCCATT A CAGGGCAT ATATCTCGCTCTCATAAGCTACTTCCTAAGGAATTCTCTTTA ATTATGGG AGCTTTTCC AG ACTCTGA AATCTTTTTTCCTGG TA AC ACA A **GTGTGAGGTGTCATTTATCAGAATGCATCACCCCAGTCTTCCCTCCA** ATGATT ACTGT AGGCTCCACTC AAGAGCTCATCCC AGTTC AAGACCACCT andra fea fearing na an tha na an the na an the state of a state where no and the state state state of a state ma nun ma a ma m AATATATATATAATAATTACCTTTTACATC CCCACCCCACAGTTTAAGTTATTCCCCCAGGGGGGAGAATATGGCAAAGTCTA CAAAACTTTGGAACAAAGCCACAGTAGTATGG <mark>ACACAAT</mark>AAAATGTACCTCTCTTTGTTTTTAACATGTTTTTCCCCTTCCTC TCTTCTTTTTTGTGAAATGTGTATTTACTTTAATATATTTGTAGTAAGT CACTTCCATGCACATATTAATTTTTTAAAGTAATAAGTATGTGTGTATTGTC TACGTGTGAAATAAAACACACATTTATTTTTATGCTTTGGAAGTTATCCA GAATCATGGAATTGTCAATCACAGTCAATCACCCAAC

Sequence of normal chromosome 9

TCCATGCATCCCTTTAATTTAGAAAAGCAATAATGTAAGGAAATTAGAGT

Sequence of der 9

Bold lettering indicates the sequence on der(9)

Localization of Translocation Breakpoints Within PATRR22

22q11.2

TBX1 is 800kb away from the breakpoint in the gap

FISH analysis of the translocation on chr22 with TBX1 probe

SPLIT BY THE TRANSLOCATION

No mutations in promoter or exons in three isoforms of TBX1

Dramatically reduced TBX1 Expression in Patient's cells

No detectable TBX1 expression in DD129BE cells by PCR or qRT-PCR

Microarray Analysis of Expression of the Genes Around the Translocation

SUMMARY

- We have demonstrated that the constitutional t(9;22) translocation occurs in AT-rich repeat intervals on both chromosomes 9 and 22
- The rearrangement was mediated by a 6 bp CACGTG palindromic sequence between the breakpoints. Chromosome 9 had a deletion of 71 bp in an AT-rich repeat region in intron 1 of CDKN2A gene, and chromosome 22 had a deletion of 62 bp in PATRR22 in an uncloned gap.
- The melanoma in this patient may have arisen according to the Knudson model in which one copy of p14arf is disrupted by the translocation followed by a somatic mutations in the other copy

CONCLUSIONS

These rearrangements on chromosomes 9 and 22 in patient DD129BE resulted in:

1. down regulation of *CDKN2A* on chr 9 that contributes to the melanoma susceptibility and reduced DNA repair and

2. down regulation of *TBX1* on chr 22 that contributes to his deafness.