Mammalian Translesion DNA Synthesis: Are Y-family Polymerases Essential?

Keiji Hashimoto

Laboratory of Chemical Biology Department of Pharmacological Sciences Stony Brook University

One-step versus Two-step TLS

One-step TLS

Inserter and Extender: Pol η for CPD

Inserter:

Pol_{Rep}

Pol η, ι, κ, (Rev1)

Extender:

Rev1, pol ζ , (κ)

From J. Sale 2013

Examine two-step TLS

- **□** Which pol(s) is the inserter?
- **□** Which pol(s) is the extender?

Three DNA adducts

- \Box Heptanone-ε-dC (H-εdC)
- □ Bezo[a]pyrene-dG (BPDE-dG)
- □ Aristolactam-dA (dA-AL-I)

Heptanone-etheno-dC

- ☐ An endogenous DNA adduct and a biomarker of lipid peroxidation
- ☐ Detected in COX2-overexpressing tissues of a mouse colon tumor model
- ☐ Detected in human autopsy tissues
- Extremely miscoding

BPDE-dG

(bezo[a]pyrene-dG)

- \square Benzo[a]pyrene is
 - ✓ a well known environmental carcinogen
 - ✓ present in the smokes of tobacco and fossil fuel combustion
- ☐ Its metabolite, benzo[a]pyrene dihydrodiol epoxide (BPDE), forms bulky DNA adducts mainly on dG
- ☐ Highly mutagenic

From E. Friedberg et al 1995

dA-AL-I

7-(deoxyadenosin-N6-yl)aristolactam I

- Aristolochic acid is
 - ✓ nephrotoxin & human carcinogen
 - ✓ observed in all *Aristolochia* plants
 - ✓ associated with chronic kidney disease and urothelial carcinomas of upper urinary tract
- **□** AL-DNA adducts cause signature mutations:
 - ✓ A to T transversions (73% of single-base substitutions)
 - ✓ located predominantly on the non-transcribed strand

TLS in TKO (triple knock-out) MEFs

- Deficient in Y-family inserter pols,
 η, ι, and κ
- **☐** Extremely sensitive to UV

TKO cells are extremely sensitive to UV

TLS across Heptanone-ε-dC is reduced in TKO Cells

H (Heptanone-ε-dC) \rightarrow G (2%)

 $H \rightarrow C$ (correct TLS is 1%)

 $H \rightarrow A (37\%)$

 $H \rightarrow T (60\%)$

TLS across BPDE-dG is highly mutagenic (>90%)

TLS across BPDE-dG is Relatively Efficient in TKO Cells

TKO cells are NOT sensitive to BPDE

TLS across dA-AL-I is NOT affected in TKO Cells

Requirement of Pol η , ι , or κ

Heptanone-ε-dC	Yes
BPDE-dG	No
AL-I-dA	No

TLS in Rev1 KO MEFs and Rev3 KO MEFs

- Rev1 C-terminal region recruits pol ζ (Rev3 + Rev7) through the interaction with Rev7
- \square Pol ζ catalyze extension step

TLS across Heptanone-\(\epsilon\)-c-dC is greatly affected in Rev1 or Rev3 knockout cells

H \rightarrow T is more dependent on Rev1 and Pol ζ than H \rightarrow A

TLS across BPDE-dG is greatly affected in Rev1 or Rev3 knockout cells

Mutagenic TLS is greatly dependent on Rev1 and Pol ζ

Rev3L-/- cells are sensitive to BPDE

TLS across dA-AL-I is NOT affected in Rev1, but greatly affected in Rev3 knockout cells

Rev1 and pol ζ are not epistatic

Requirement of Rev1 and Pol ζ

	Rev1	Polζ
Heptanone-ε-dC	Yes	Yes
BPDE-dG	Yes	Yes
AL-I-dA	No	Yes

Are Y-family pols essential?

	η, ι, κ	Rev1	Polζ
Heptanone-ε-dC	Yes	Yes	Yes
BPDE-dG	No	Yes	Yes
AL-I-dA	No	No	Yes

Which pol(s) inserts opposite adducts? When η , ι , and κ are Absent

- \square Replicative **pol** δ inserts
 - → Pol-switching with Pol ζ through shared subunits, Pold2 and Pold3
- \square Pol ζ itself inserts
- PrimPol or other pols

How is Pol ζ recruited?

Acknowledgement

Stony Brook, New York

Masaaki Moriya

Arthur Grollman

Francis Johnson

Radha Bonala

Leiden, Netherland

Niels de Wind

Philadelphia, Pennsylvania

Ian Blair

Smithville, Texas

Richard Wood

Tokyo, Japan

Fumio Hanaoka

Haruo Ohmori

Jun-ichi Akagi