AATUAUAAATGATUAGGGAAUTGUAAATU GCACTATATAGTATACATATATACTAT ΔΙΔΙ AIAIAGIAIA ATGGTATAATATACAGTATATAATATATA ΑΤΑΤΑΤΑΑΤΑΤΑΑΑ ΤΑΤΑΤΑΤ διάδτατ ATTAGATATA ATACAATGTA GATATAATATATAATA

DNA Polymerase Navigation through Difficult-to-Replicate Sequences to Prevent Genome Instability

Kristin Eckert, Ph.D. Professor of Pathology and Biochemistry & Molecular Biology

Penn State University

NIH DNA Repair Interest Group December 21, 2021

GENOME INSTABILITY

Genetic variants created randomly throughout the genome fuel cancer cell evolution

Types of Genetic Variation in Tumors

1 f

TT

13

14

80

Small scale changes:

	p53 in skin cancer	TGF β RII	in colon	cancer
	Met Asn Arg Arg	Glu Lys	Lys Lys	Pro Gly
	ATG AAC CGG AGG	GAA AAA	AAA AA G	CCT GGT
	*		Δ	
	ATG AA <u>T T</u> GG AGG	GAA AAA	AAA GCC	TGG TGA
	Met Asn Trp Arg	Glu Lys	Lys Ala	Trp Stop
_				

Large scale changes (structural variation):

Normal cell: Diploid

Cancer cell: Aneuploid; marker chromosomes

104

68

18

100

17

28

16

Cancer etiology: chemical carcinogenesis

Making Mutations is an Active Cellular Process

evolution

Eckert lab research: Experimental Approaches

G2 (X) The cell "double checks" is repairs. Mitosis Cytokinesis (X) S S S Cytokinesis Cytokinesis Cultur contents, ciclular contents,

Multiple DNA polymerases are required to maintain human genome stability

Replication

* Pol alpha (α, POLA)
* Pol delta (δ, POLD1)
* Pol epsilon (ε, POLE)

Repair

* Pol beta (β, POLB)
 Pol lambda (λ, POLL)
 Pol mu (μ, POLM)
 Pol theta (θ, POLQ)

* Studied in Eckert lab

Specialized Synthesis

* Pol zeta (ζ, *POLZ; REV3*)
 * Pol eta (η, *POLH; XPV; Rad30*)
 * Pol kappa (κ, *POLK; DINB1*)
 * Pol iota (ι, *POLI*)

Rev 1 (dCMP transferase)
Pol nu (v, POL N)
* PrimPol (CCDC111)

Mitochondrial Pol gamma (y, POLG)

DNA polymerase activities must be orchestrated to ensure complete genome duplication before mitosis What is the sequence composition of the human genome?

~60% of the human genome sequence is repetitive DNA

Repetitive Sequences are found throughout Genomes

Telomeres

Rare fragile sites

Common fragile sites (CFS)*

Mobile Elements*

[TTAGGG]_n

[CGG/GCC]_n [CAG/GTC]_n

[A/T]_n [AT/TA]_n

Quasi-palindromes

G4 motifs

* Locations of recurrent structural variation in cancer cells

Random Sequences

B-DNA

Repetitive sequences: Non B DNA

DiToRS: Difficult-To-Replicate Sequences

DNA polymerases in the driver's seat

DNA polymerase inhibition and errors during replication

What constitutes a "DiToRS" ?

What is the complete landscape of DiToRS in the human genome ?

When do DiToRS become threats to genome stability in cancer cells ?

Defining DiToRS: Using FRA16D as a model locus

FRA16D locus:

- One of the most "fragile"
 Common Fragile Sites
- ~300 kb in length
- Resides within an intron of the WWOX tumor suppressor gene
- Site of recurrent deletions in tumor cells

Template	CFS	Repeat Elements*
AT repeat 1	FRA16D	[A/T] ₂₈ , [AT/TA] _{23i}
AT repeat 2	FRA16D	[A/T] ₉ , [AT/TA] ₈
AT repeat 4	FRA16D	[AT/TA]9
Quasipalindrome 1	FRA16D	[A/T] ₁₉ , QP ₃₆
Quasipalindrome 2	FRA16D	QP ₃₇
Quasipalindrome 3	FRA16D	QP ₂₉

* Sequences include known breakpoints observed in tumor cells

Experimental Approach to Define DiToRS: Quantitative Assay with Nucleotide Resolution

Shah et al (2010) Nucl. Acids Res. 38: 1149.

Replicative Human Pol δ displays slowed elongation within Repetitive FRA16D Regions

- Slowed DNA synthesis within specific sequences
- Strand biases observed
- Similar results for Pol α-primase

Shah et al (2010) Nucl. Acids Res. 38: 1149.

Human Pol δ Synthesis Pausing within A/T Microsatellites

+ RFC - RFC Trap + cont. + exp. Trap -+ cont. +exp. TA_{24i} TA_{24i} A28 A28 P

Walsh et al. (2013) <u>J. Mol. Biol</u>. 425: 232.

Pol δ dissociates within FRA16D sequence

Non-B DNA Structure Formation at [AT] repeats slows Pol δ Synthesis

Kaushal, S. et al. (2019) Cell Reports 27:1151-64

Defining DiToRS for Replicative Polymerases (to date)

Shah et al (2010) ; Walsh et al. (2013) ; Shastri et al (2018); Kaushal, S. et al. (2019)

Getting Through DiToRS: Help for Replicative Polymerases

- Replicative polymerasesinhibition
- Specialized polymerasesefficient synthesis

Pols η and κ display efficient synthesis through FRA16D repeat elements

Barnes et al. (2017) DNA Repair.

Walsh et al. (2013) J. Mol. Biol.

Bergoglio et al. (2013) J. Cell Biol.

Are multiple polymerases needed to complete DiToRS replication?

Biochemical assay to measure polymerase exchange at DiToRS

Barnes et al (2017) DNA Repair 57: 1-11.

FRA16D AT1

Specialized Pols Efficiently Exchange with Replicative Pol δ to Complete DiToRS Replication

mean ± SEM, ANOVA Significance relative to δ + δ : *** = p < 0.001 ****= p < 0.0001

Dual polymerase reactions with <u>equal</u> <u>activity</u>

Pols η or κ ensure complete DiToRS synthesis in the presence of aphidicolin

(mean ± SEM) for N > 3 independent experiments.
#, statistical significance relative to EtOH
*, statistical significance relative to δ+δ.

Barnes et al (2017) DNA Repair

What is the Impact of RPA on Pol δ synthesis through DiToRS?

Kristin Eckert Penn State-Hershey College of Medicine

Mark Hedglin Penn State-University Park College of Science Department of Chemistry What is the complete landscape of DiToRS in the human genome?

Wilfried Guiblet PacBio IPD data used as surrogate for polymerase pausing

Identifying DiToRS Genome-Wide

- IPD curve shapes differ, depending on motif sequence
- All G4 motifs have significantly higher IPDs, compared to motif-free controls
- Other non-B motifs with altered polymerization kinetics: Z-DNA, Aphased repeats, mirror repeats
- Sequencing error rates significantly increased for G4 vs motif-free windows:
 - Base substitutions- 1.79 fold
 - Single base deletions-1.49 fold

Marzia Cremona

Interval-Wise Testing (IWT) for statistical differences in curve distributions

Wilfried Guiblet, Marzia Cremona et al. (2018) Genome Research 28: 1767-1778

Nucleotide Substitution Frequencies Vary at Stable G4 motifs Genome-wide

*Sahakyan et al. (2017) Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep., 7, 14535.

4 stems; 3 loops

001

Q-quadruplex

- G4 loci annotated with Quadron (hg19), using the non-coding, non-repetitive subgenome
- SNP frequency determined from the Simons Genome Diversity Project (~30X depth, 279 individuals)

Guiblet, Cremona et al (2021) <u>Nucleic Acids Research</u> 49:1497-1516 Do G4s affect human DNA polymerase fidelity?

Do G4 sequences inhibit replicative DNA polymerase holoenzymes ?

Do G4s Increase Human DNA Polymerase Errors?

MaryElizabeth Stein

G4 Motif	ID	Length (nts)	Location	G4 Type*	T _m (°C)
5' <u>GGG</u> cgaa <u>GGGG</u> cgagcca <u>GGGG</u> taa <u>GGGG 3</u> '	FER1L4	29	intron	antiparallel	75.6
5' <u>GGGG</u> c <u>GGG</u> cc <u>GGGGG</u> c <u>GGGG</u> tcccggc <u>GGGG</u> 3'	VEGF	31	promoter	parallel	83.5
5' <u>GGGG</u> c <u>GGG</u> cc <u>GGGGG</u> c <u>GGGG</u> 3'	VEGF ^{mut}	20	n.a.	parallel	85.5

* Determined in polymerase reaction buffer using circular dichroism

Polymerase fidelity hierarchy is maintained during G4 synthesis

M. Stein, in preparation

G4 motifs influence errors made in flanking sequences

Pol η : FER1L4

Flanking window size based on average G4 length. Δ = Deletion event, \blacktriangle = Insertion event, Underline = deletions >1nt, substituted bases above sequence.

G4 motifs influence errors made in flanking sequences

Chi-square analysis

Breadth of DNA pol errors involving G4 motifs

Integrative approach to analyzing DiToRS

What are the potential biological consequences of polymerase errors within G4s?

Matthias Weissensteiner

Quadron Score = likelihood of G4 formation:

- Potential quadruplex sequence (PQS) identification (Quadparser and G4seq)
- Features of G4 sequence and flanking sequence (e.g., loop lengths, which G-tract number)

 Δ Quadron Score = mutant score – WT score Kruskal-Wallis test, ** p < 0.01; N = total number of mutants

Some errors completely abolished G4 potential

Motifs Examined:

Name	G4 Motif (5'-3')	Quadron Score*	Fold (CD) ^a	т _м (°С)
FER1L4	<u>GGG</u> CGAA <u>GGGG</u> CGAGCCA <u>GGGG</u> TAA <u>GGGG</u>	17.8	Antiparallel	75.6
RRP	<u>GGG</u> CA <u>GGGG</u> CTCCCT <u>GGG</u> CT <u>GGG</u>	11.7	Antiparallel	67.3
L1	<u>GGGG</u> T <u>GGGGGG</u> A <u>GGGG</u> A <u>GGG</u>	22.0	Parallel	>90

^a Circular Dichroism and thermal melting performed in polymerase reaction buffer (+150 mM KCI) All motifs form intrastrand G4s

- Motifs selected from genome-wide study
- Vary in sequence composition and stability

Pausing by Human Polo4/PCNA/RFC Increases with G4 Stability

S.Hile, unpublished

Does DNA synthesis remain coupled on complementary G-rich and C-rich strands?

> G4 motifs: Strand biased IPD G strand > C strand

Guiblet and Cremona 2018

G4 Motif Choice: Abundance and Function

Name	G4 Motif (5'-3')	Quadron Score*	Fold (CD) ^a
FER1L4	GGGCGAAGGGGCGAGCCAGGGGGTAAGGGG 1 motif in human genome	17.8	Antiparallel
RRP	<u>GGG</u> CA <u>GGGG</u> CTCCCT <u>GGG</u> CT <u>GGG</u> 3 motifs in human genome	11.7	Antiparallel
L1	GGGGTGGGGGGGAGGGAGGGAGGGAGGGAGGGAGGGAGG	22.0	Parallel
SVA	GGGAGGGAGGTGGGGGGGG 2,681 occurrences within SVA_F elements	32.6	Parallel
OGRE ^a	<u>GGGGG</u> AT <u>GGGG</u> TTGGAAT <u>GGGGG</u> C <u>GGG</u>	n.d.	n.d.
Random	GAGCTGAGTGGAGGCGTGAGCG	n.a.	n.a.

Mobile elements are a highly abundant source of stable G4s in the human genome

^a Origin G-rich element (mouse genome), ori2 sequence Prorok et al. (2019) <u>Nature Communications.</u> PMID: 31332171

M. Weissensteiner

Joe Dahl (NIEHS)

yeast Pol δ and Pol ε holoenzymes

Suzanne Hile

Perspective: How are G4 motifs maintained in the human genome, so as to retain structure/function?

MUTATION

Human polymerase error frequencies within G4s are not elevated, relative to flanking control sequences

- Presence of G4 increases polymerase errors within 3' flanking regions
- Polymerase errors within the G4 motifs can increase or decrease predicted G4 stability
- Increased germline SNP frequency could be due to G4 effects on other mutational pathways
 - Inhibition of mismatch repair
 - Increased DNA damage

REPLICATION

Some, but not all, G4 motifs impede replicative holoenzyme synthesis in a strand-dependent manner.

- Increased pausing on G-rich strand observed for both Pol ε and Pol δ.
 - G4 motifs in mobile elements and an OGRE
- Replication uncoupling at G4s is greatest when in the leading strand conformation
- Assistance of other replication proteins will be crucial to replicate G4s in the genome
 - Specialized polymerases (Pols η, κ)
 - RPA
 - Specialized helicases (FANCJ, WRN)

When do DiToRS become threats to genome stability?

Replication Stress and DiToRS threats

- Ribonucleotide reductase inhibition (low [dNTPs]
- RPA exhaustion
- Specialized polymerase deficiency (e.g., Pol η)
- Specialized helicase deficiency(e.g., WRN)
- Oncogene activation

Specialized Polymerases Ensure Complete DiToRS Replication

Eckert Laboratory

Suzanne Hile

- MaryElizabeth Stein
- Bryan Tsao, Ph.D.
- former grad students

Collaborators

Purified proteins

- Marietta Lee/Sufang Zhang (hPol δ)
- Linda Bloom (RFC)
- Joe Dahl (yPolδ, Polε)

The Penn State Team

Makova/Chiaromonte Group

- Wilfried Guiblet
- Marzia Cremona
- Matthias Weissensteiner

Hedglin Laboratory (RPA studies)

- Mark Hedglin
- Kara Pytko

G4 biophysical analyses

- Iva Kejnovska
- Eduard Kejnovsky

Funding

