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Damage RNA

DNA repair: guarding genome and epigenome integrity?

DNA repair

SIRT1:
NAD+ dependent 
HDAC.

DNA damage-induced gene silencing at DSBsEctopic gene expression

Oberdoerffer et al, Cell 2008
Singh…Oberdoerffer, J Exp Med 2013

Gene A Gene B Gene C

Kruhlak et al., Nature 2007, Shanbhag et al, Cell 2010

Impact on epigenomic integrity

(Epi)genomic stem 
cell maintenance.
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Repressive chromatin domains

Active chromatin domains

ATRATR
ATMATM

Chromatin remodeling

DNA damage
Replication stress

RNA
Pol

(Transient) epigenetic change

DNA
Pol

Impact of DNA damage on chromatin organization

Epigenome roadmap

Higher level chromatin organization
determines cell identity and function

 DNA damage as means to shape 
and/or modulate the epigenome?



Age

Oberdoerffer and Sinclair, “Reorganization of Chromatin Modifiers Hypothesis” Nature Reviews 2007

Environmental stress
Replication

DSBs

DNA damage as a driver of epigenomic change in aging and cancer?

Epigenetic changes/noise
Linked to both aging and cancer

Chronic damage exposure
Repair defects



Age

Environmental stress
Replication

DSBs

DNA damage as a driver of epigenomic change in aging and cancer?

Chronic damage exposure
Repair defects

 Consequences of DSBs for transcriptional integrity in vivo?

 Chronic DNA damage response as a means to shape chromatin?



IPpoIER

A mouse model for temporally and spatially controlled DSB induction

Kim et al., Nucleic Acids Res 2016

Transcriptional consequences upon 
T cell-specific DSB induction?

I-PpoI: 
Intron-encoded endonuclease from Physarum polycephalum

 Cuts mouse genome at ~ 150 defined sites

ER GFPI-PpoISTOP IRES

Inducible, tissue-specific I-PpoI mouse model

Cre recombinase

ER GFPI-PpoI IRES

Tamoxifen IPpoIER

• I-PpoI causes gene repression specifically 
in DSB-containing genes.

• DSB-induced gene repression is transient 
and dependent on DNA damage signaling.

The mammalian transcriptome is 
sufficiently robust to accommodate 

short term DSB exposure. 



However…

Data from labs of David Sinclair, Shelley Berger and Rafa de Cabo

Cre control (16 mo old) I-Ppo/Cre (16 mo old)

• Mice exposed to several weeks of DSB induction early in life

• Evidence for epigenetic memory of DSB induction…



Can we test the impact of 
chronic DNA damage under 
physiological conditions?



Replication stress: a source of chronic, HR-associated DNA damage

Sources of replication stress (fragile sites)

Adapted from Gaillard…Aguilera, Nat Rev Cancer 2015
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MacroH2A1 – a unique yet underappreciated histone variant

Discovered by 
John Pehrson

Promotes 
repressive 
chromatin

1.1 variant binds 
ADP-ribose derivatives

1.1 variant linked to 
DDR/NHEJ

Interferes with melanoma 
progression via CDK8

Interferes with reprogramming

1.2 variant linked to HR/BRCA1
1.1 variant promotes 

senescence

macroH2A KO without 
major phenotype

Two splice variants: 
1.1 and 1.2
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Papers on histone variants

Pehrson, Luger, Bernstein, Ladurner, Gamble, Price, Buschbeck and others…

 Variant-specific analyses! 
Macro-
domain

H2A core

Enriched on 
Xi



The macroH2A1.2 variant promotes BRCA1-dependent DSB repair

Khurana et al., Cell Reports 2014

Implications for (epi)genome maintenance?

• RNAi screen identified macroH2A1.2-specific 
role in homology-directed DSB repair

Macro-
domain

H2A core

 Facilitates BRCA1 accumulation, 
end resection and HR

 MacroH2A1.2 promotes dynamic 
chromatin condensation at DSBs 

BRCA1BRCA1

macroH2A1.2

DSB
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A system for locally defined replication fork arrest

macroH2A1.2 accumulates at artificial replication blocks

Replication

256 x LacO

DNA
Pol

mCherry-LacR

macroH2A1.2 accumulates at 
artificial replication stops

***

En
ric

hm
en

t a
t L

ac
 a

rra
y

EdU–EdU+

1

2

3

4

5

m
H

2A
1.

2+

48% 17%
LacR

EdU–

EdU+

mH2A1.2

Beuzer…Almouzni, Cell Cycle 2014

LacR BRCA1

EdU+

(S 
phase)

EdU–

 Link to the replication stress response?



RS-induced mH2A1.2 
accumulation is DDR-dependent 
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MacroH2A1.2 loss causes 
increased DNA damage at CFSs

Also by comet assay…
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Can macroH2A1.2 protect from replication stress-induced damage?  
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 Molecular basis for macroH2A1.2-dependent protection from RS?



macroH2A1.2 facilitates BRCA1 accumulation upon replication stress
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Fragile region
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accumulation upon replication stress?

mH2A1.2



No known macroH2A1.2 chaperones!

Buschbeck & Hake, Nat. Reviews, 2017



FACT remodels H2A/H2B dimers at replication forks

mH2A1.2

RPARPA
RPARPA

RPARPA

FACT

FACT subunits promote RS-associated 
mH2A1.2 accumulation at Lac arrays…

… and common fragile sites.

?

Reinberg, Diffley, Aguilera, Formosa, Stillman, others…

La
cR

m
H

2A
1.

2

sh-RFP sh-SPT16 sh-SSRP1

0

10

20

30

40

50

60

70
sh-RFP
sh-SPT16
sh-SSRP

EdU+ EdU–

%
 c

el
ls

 w
ith

 m
H

2A
1.

2 
at

 a
rra

y

**
**

NS
NS

• FACT (SUPT16H/SSRP1) complex is the main 
H2A/H2B chaperone at replication forks.

• FACT loss causes HR and replication defects.

 FACT mediates macroH2A1.2 accumulation 
in a replication stress-dependent manner.

 FACT interacts with 
macroH2A1.2/H2B dimer 
in vitro and in vivo.

With help from Luger lab
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-H2AX

?

 MacroH2A1.2 incorporation also depends 
on DNA damage signaling.

MacroH2A1.2 accumulation at fragile sites requires H2AX phosphorylation

ATRATR
ATMATM

RPARPA
RPARPA

RPARPA

Urbain Weyemi / Bill Bonner

 MacroH2A1.2 incorporation requires H2AX phosphorylation.

• FACT (SUPT16H/SSRP1) complex is the main 
H2A/H2B chaperone at replication forks.

• FACT loss causes HR and replication defects.
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in a replication stress-dependent manner.
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The Lego problem…

Potential to shape chromatin during continued replication stress? 



Serum Starvation

Minimal replication

Continuous replication drives persistent macroH2A1.2 accumulation

 Dependence on replication? ✔

***

Replicative age causes mH2A1.2 accumulation at CFSs
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DDR

Replication 
stress

Senescence

Bartek, d’Adda di Fagagna and others

Consequences of macroH2A1.2 loss in primary cells

BRCA1BRCA1

 Barrier to malignant transformation

HR defectsmacroH2A 
loss?
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Replication stress shapes a protective chromatin environment at fragile regions

Kim et al, Mol Cell, in press



Implications for the epigenome

Fragile regions / macroH2A1.2 domains

• A subset of chromatin domains are the result of 
chronic DNA damage exposure.

• Implications for age-associated chromatin reorganization 
and epigenomic dysfunction.

A more general role for macroH2A1.2 in HR and/or 
replication stress-associated genome maintenance?
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Modulation of 
DNA repair
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Replication stress
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Feedback between DNA repair and chromatin modulates cell function 
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