Polo-like Kinase 1 in genomic instability

Xiaoqi Liu

Department of Toxicology and Cancer Biology

University of Kentucky

The fate of a single parental chromosome throughout the eukaryotic cell cycle

The stages of mitosis and cytokinesis in an animal cell

Anaphase

Telophase

Cytokinesis

Control of mitotic entry and exit by Cdc2/cyclin B and APC

(Liu & Erikson, PNAS 2002; Liu & Erikson, PNAS 2003; Liu et al, MCB 2005; Liu et al, MCB 2006)

The polo-like kinases have a C-terminal polo-box domain

PIk1 localizes to mitotic structures

Centrosomes

Spindle poles kinetochores

Spindle poles kinetochores

Midbodies

---Plk1 overexpression is correlated with cell proliferation and carcinogenesis.

---Plk1 is a new diagnostic marker for cancer.

---Plk1 inhibitors are in various clinical trails.

---However, how Plk1 contributes to carcinogenesis is elusive.

Does Plk1 elevation contribute to cancer progression?

Approach: generation of Plk1-Knock in (KI) mouse line

No apparent phenotypes for Plk1-KI mice, but they are hyper-sensitive to IR c

А

D

B-actin

PIk1-KI mice have increased incidence of lymphoma or severe fatty change upon IR

Multifocal lymphoid hyperplasia⁵ in perivascular location

Mild lymphoma

Multiple lymphocytic overgrowth in the parenchyma

Severe lymphoma

Plk1 Kl inhibits expression of DNA damage repair genes

Dr. Zhiguo Li Dr. Jinghui Liu

More specific mechanism?

A hypothesis to be tested

Plk1 elevation leads to

1) premature termination of DNA damage checkpoint and

2) reduced DNA repair

Plk1-associated activity antagonizes DNA damage checkpoint

Plk1 phosphorylates Mre11 at S649 and S688 in vitro

In vivo, Plk1 phosphorylates Mre11-S649 and CK2 targets Mre11-S688

Mre11-S649/S688 phosphorylation is required for G2 DNA damage checkpoint recovery

1st T block \longrightarrow 8h rel. \longrightarrow 2nd T block \longrightarrow 7h rel. \longrightarrow Dox for 1h \longrightarrow caffeine for 3h \longrightarrow p-H3 IF

Phosphorylation of Mre11 at S649/S688 inhibits its binding to DNA

Phosphorylation of Mre11 at S649/S688 abolishes its foci formation

Phosphorylation of Mre11 at S649/S688 abolishes Nbs1 foci formation

Phosphorylation of Mre11 at S649/S688 abolishes Rad50 foci formation

Phosphorylation of Mre11 at S649/S688 inhibits DNA damage checkpoint

Mre11-S649/S688 phosphorylation inhibits DNA repair

Plk1 phosphorylation of Mre11 leads to

- 1) premature termination of DNA damage checkpoint
- 2) reduced DNA repair

Li et al., JBC, 2017, 292, 17461.

Dr. Zhiguo Li

Inhibition of transcription

MDC1 KO phenotype

Gastrointestinal

А

в

Lymph Nodes

Gastrointestinal

Liver

Liver and Spleen

MDC1 heterozygous mice are cancer prone by a DDR-independent pathway

С

E

MDC1 reduction causes aneuploidy

MDC1 is required for mitotic progression

MDC1 is required for timely progression of mitosis

HeLa expressing GFP-α-tubulin

MDC1 is phosphorylated in mitosis

PIk1 phosphorylates MDC1 at T4

p-T4-MDC1 localization in prophase and prometaphase

p-T4-MDC1 localization in mitosis

Kinetochores

Kinetochores

Microtubule (+) ends

Midbody

p-T4-MDC1 localization in mitosis

Nuclear envelope

Kinetochores

Kinetochores

Kinetochores

Midzone

Midbody

Plk1 phosphorylation of MDC1-T4 is required for mitotic progression

Plk1 phosphorylation of MDC1-T4 is required for mitotic progression

--MDC1 has a function independent of DNA damage response

- --MDC1 is required for mitosis
- --MDC1 is phosphorylated by Plk1 at T4
- --Plk1 phosphorylation of MDC1-T4 is required for timely progression through mitosis

Publications: Li et al., Mol Cell Biol, 2017, 37, e00595.

Dr. Zhiguo Li

The Numb/p53 pathway

- -- Numb is an inhibitor of Notch signaling
- -- Numb is involved in the cell-fate decisions of a number of cell lineages
- -- Numb, MDM2 and p53 form a trimeric complex
- -- Numb stabilizes p53 by inhibiting the E3 ubiquitin ligase activity of MDM2

Plk1 phosphorylates Numb at S265 and S284 in vitro

Numb-S265 is phosphorylated in vivo in a Plk1 dependent manner

Numb degradation is enhanced by Plk1-associated kinase activity

Plk1 phosphorylation of Numb results in its proteasome degradation

Plk1 negatively regulates the Numb/p53 pathway

Plk1 phosphorylation of Numb contributes to p53 degradation

Cells expressing Numb-S265A/S284A are more sensitive to doxorubicin

Cells expressing Numb-S265A/S284A are more sensitive to doxorubicin

Tumors carrying Numb-S265A/S284A are more sensitive to chemotherapy

Tumors carrying Numb-S265A/S284A are more sensitive to chemotherapy

Cleaved Caspase 3 IHC

Working model

Publications: Shao et al., Oncogene 2018, 37, 810.

Tumors carrying a high level of Plk1 and WT p53

Acknowledgements

Funding: NIH