

XERODERMA PIGMENTOSUM: When the lifeguard of the gene pool goes on strike

Kenneth H Kraemer, M.D.

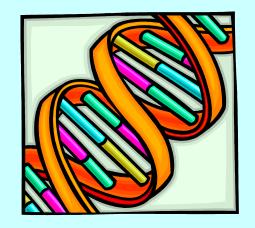
Laboratory of Cancer Biology and Genetics

National Cancer Institute

National Institutes of Health

Bethesda, MD

Nov 15, 2022


LONG TERM MEMBERS OF THE TEAM

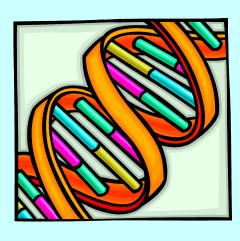
John DiGiovanna M.D. Senior Research Physician

Debby Tamura R.N. Research Nurse

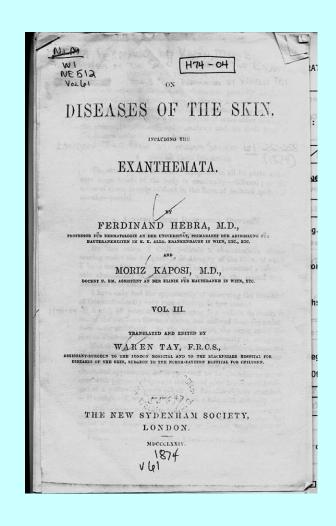
Sikandar Khan Ph.D. Staff Scientist

DISCLOSURE OF RELEVANT RELATIONSHIPS WITH INDUSTRY

Kenneth H Kraemer, M.D.


I do not have any relevant relationships with industry.

WHY STUDY RARE HUMAN GENETIC DISEASES? Importance of Natural History Studies


- CARE FOR AFFECTED PATIENTS
- DISCOVER MECHANISMS OF DISEASE
- DOCUMENT BASELINE PARAMETERS USE FOR COMPARISON WITH FUTURE TREATMENTS
- DEVELOP NEW THERAPEUTIC PARADIGMS: USING SMALL NUMBERS OF PATIENTS AT HIGH RISK OF CANCER

Outline

- Early history of xeroderma pigmentosum (XP)
- NIH studies of XP and trichothiodystrophy (TTD) clinic to laboratory and back
- Molecular Epidemiology
- Patient Management

FIRST DESCRIPTION OF XERODERMA PIGMENTOSUM 1874 - MORIZ KAPOSI

Moriz Kohn 1837 - 1902

1953 – Watson and Crick describe double helix DNA structure

1964 – Richard Setlow and Phil Hanawalt separately describe DNA repair replication in bacteria 1968 – James Cleaver describes DNA repair defect in XP

Defective Repair Replication of DNA in Xeroderma Pigmentosum

by

J. E. CLEAVER

Laboratory of Radiobiology, University of California Medical Center, San NATURE VOL. 218, MAY

NATURE, VOL. 218, MAY 18, 1968

Normal skin fibroblasts can repair ultraviolet radiation damage to DNA by inserting new bases into DNA in the form of small patches. Cells from patients with the hereditary disease xeroderma pigmentosum carry a mutation such that repair replication of DNA is either absent or much reduced in comparison to normal fibroblasts. atients with xeroderma pigmentosum develop fatal skin cancers hen exposed to sunlight, and so the failure of DNA repair in the skin must be related to carcinogenesis.

Kenneth Kraemer

- 1971 Joined United States Public Health service at NIH
- Dermatology Branch, National Cancer Institute

1971

1971 – NIH Harlem Hospital, NY US Public Health Service

2009

DR. JAY ROBBINS

Xeroderma Pigmentosum

An Inherited Disease with Sun Sensitivity, Multiple Cutaneous Neoplasms, and Abnormal DNA Repair

Moderator: JAY H. ROBBINS, M.D. Discussants: KENNETH H. KRAEMER, M.D.,
MARVIN A. LUTZNER, M.D., BARRY W. FESTOFF, M.D., and HAYDEN G. COON, Ph.D,
Bethesda, Maryland

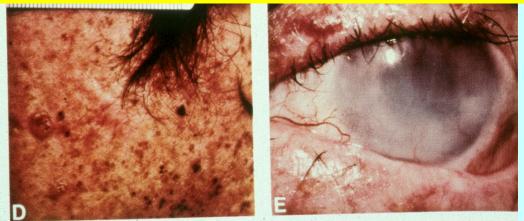
Detailed clinical and laboratory description of 15 XP patients – Varied phenotypes

DNA repair comprise four distinct complementation groups, indicating that at least four mutations can cause defective DNA repair.

DR. JAY H. ROBBINS*: Xeroderma pigmentosum is

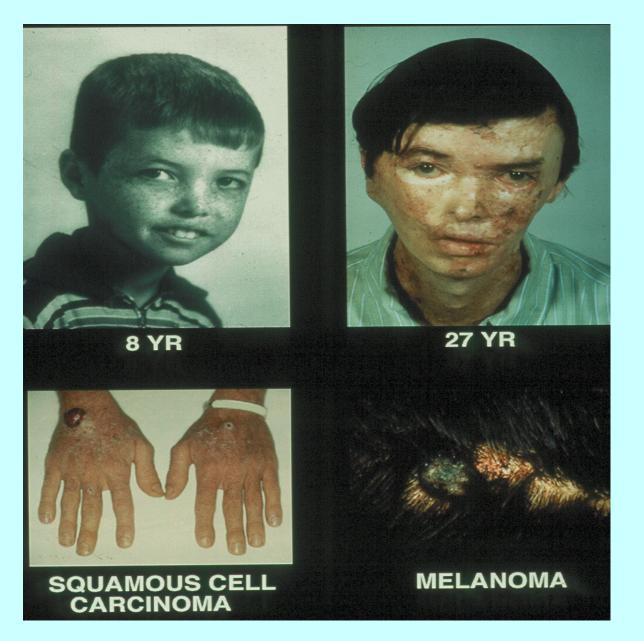
DNA-repair defect has been studied in fibroblast strains from approximately 60 patients with xero-derma pigmentosum. In the Dermatology Branch of the National Cancer Institute we have performed photobiological studies of the DNA-repair process in various types of cells from 15 of these patients, representing 12 kindled (0.15). We have also evaluate

% of the normal DNA repair rate, show many of the cuand numerous freckles with different intensities of pigorneal transplant. The deformities of the nose and left
, whose cells have no detectable defect in UV-induced
igmentosum. The white, relatively disease-free areas of
s obtained several years earlier from sun-protected, rela//a and the destruction of the left lower eyelid. C. Patient
55% of the normal DNA repair rate. The parents of paease. The nose of Patient 5 has undergone several surgiions. D. Back and buttocks of Patient 6, showing the


Donated cells from all patients to cell bank
 made available to scientific community

ZZ8 representative . William of Internal Medicine . Approve 80 . Mamper 5

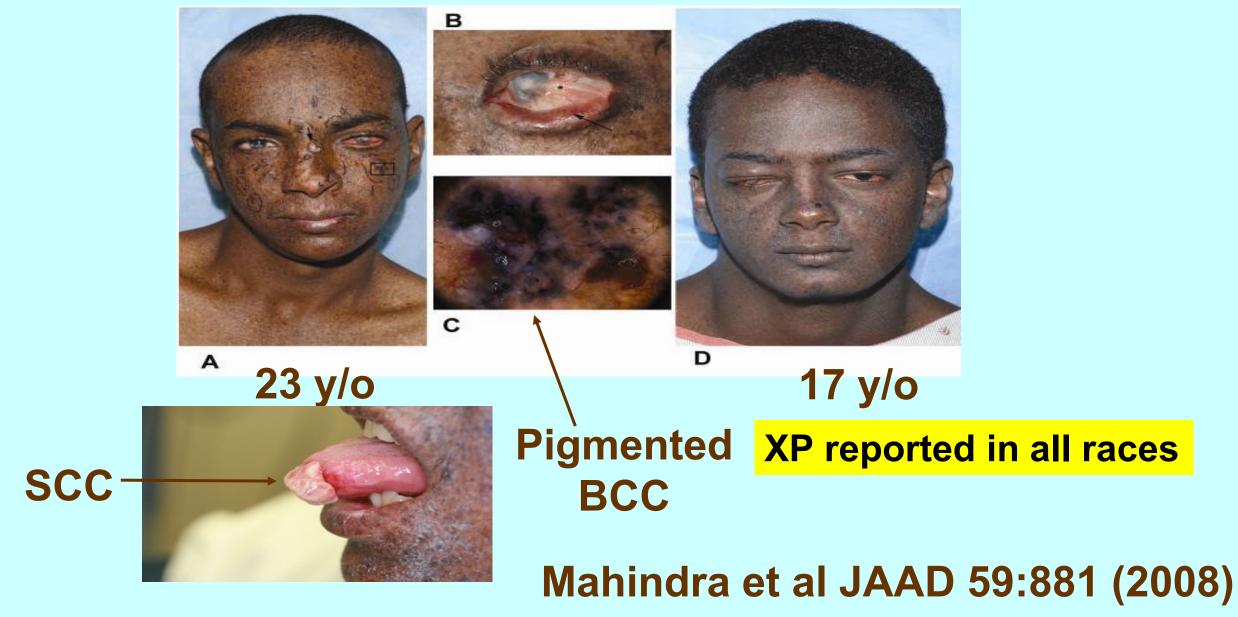
XERODERMA PIGMENTOSUM CLINICAL FEATURES



Premature photoaging of epidermis

Mol. Medicine Today 5: 86 (1999)

XP VARIANT - XP4BE


Polymerase eta defect

Died age 27 yr of metastatic melanoma

Multiple *PTEN* mutations in metastatic melanoma lesions

Wang et al JID 2009

AFRICAN BROTHERS WITH XERODERMA PIGMENTOSUM

XERODERMA PIGMENTOSUM / COCKAYNE SYNDROME

XP/CS group B - XP11BE

28 yr

Mother

DR. DIRK BOOTSMA - ROTTERDAM

Reported 2 complementation groups in XP cells in 1972

Genetic Heterogeneity of Xeroderma Pigmentosum demonstrated by Somatic Cell Hybridization E. A. DE WEERD-KASTELEIN, W. KEIJZER & D. BOOTSMA

Nature New Biology 238: 80–83 (1972)

AUTORADIOGRAPHY WITH CELL FUSION

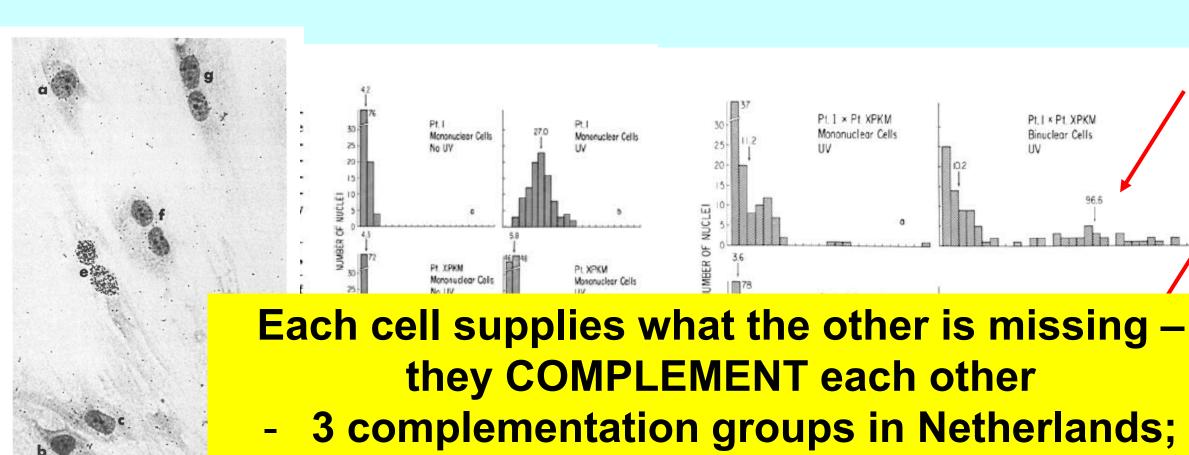


Figure 9. Autoradiogram of unfused mone (a to d) and of binuclear fibroblasts (e to g treated culture containing cells from Patier

are in different complementation groups. The cells were exposed to 150 ergs/mm2 of UV light and treated as described in the legend of Figure 3. The binuclear cell with numerous grains over its nuclei (e) is a heterokaryon whose nuclei have complemented each other, since both nuclei seem to have a normal or nearly normal amount of UV-induced 3HTdR incorporation, compared with the incorporation in the normal cells in Figure 3B. The other binuclear cells (f and g) are homokaryons, and their nuclei have no more incorporation than the nuclei of the unfused mononuclear cells (a to d). (Acid hematoxylin; magnification,

10, 11 through 15, and so forth. Each arrow indicates the mean grain count for the 100 consecutively evaluated nuclei of each histogram, except that occasional cells with a high grain count that were apparently not in the grain distribution of the group evaluated were excluded (for example, the single cell in the 61-through-65 grain class of d). When more than thirty nuclei are in a single grain class, the bar representing them is truncated, and the number of cells in that class is printed above. See text for further description and interpretation.

ilas 40 or more grains over it. G. monifragiated mononuclear cells, not treated with virus, from a normal contro donor. D. Irradiated mononuclear cells, not treated with virus, from the normal control donor. The grain distribution and mean grain count for the UV-induced 'HTdR incorporation into these normal cells (d) is approached by the complementing heterokaryons in b. On hundred nuclei were evaluated for each histogram, except that only fifty were evaluated for d. Details are explained in legend of Figure 11. See text for further description and interpretation.

Annals Int Med 1974

3 in NIH

Mutation Research, 33 (1975) 327—340
© Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

FIVE COMPLEMENTATION GROUPS IN XERODERMA PIGMENTCSUM

K.H. KRAEMER¹, E.A. DE WEE (D. KASTELEIN², J.H. ROBBINS¹, W. KEIJZER², S.F. BARRETT¹, R.A. PETINGA¹ AND D. BOOTSMA²

Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20014 (U.S.A.) and ² Department of Cell Biology, and Genetics, Erasmus University, P.O. Box 1738, Rotton (Che. Netherlands)

(Received July 24th, 1975) (Accepted July 28th, 1975)

Summary

A collaborative study was undertaken to determine the relationship between the three DNA repair complementation groups in xeroderma pigmentosum found at Erasmus University, Rotterdam, and the four groups found at the National Institutes of Health, Bethesda. The results of this study reveal that there are five currently known complementation groups in xeroderma pigmentosum.

Introduction

Patients with xeroderma pigmentosum (XP) develop malignancies and pigmentation abnormalities on areas of skin exposed to sunlight [10]. Skin fibroblasts from most patients with this autosomal recessive disease are unable to perform excision repair of UV-induced pyrimidine dimers in their DNA as rapidly as normal fibroblasts [2,3,10]. This defective repair can be manifest as a decreased rate of UV-induced unscheduled DNA synthesis (UDS) [2,3,10]. In 1972 investigators at Erasmus University, Rotterdam, found two complementation groups in XP by showing that nuclei in heterokaryons formed by fusing fibroblasts from certain pairs of such repair-defective XP patients performed UV-induced UDS at a normal rate [11]. Subsequently a third complementation group was found among the Rotterdam XP strains [12].

The demonstration of genetic heterogeneity for DNA repair among the Rotterdam XP

5 complementation groups - named in order of increasing residual repair Mutat Res1975

TABLE III

COMPARISON OF UV-INDUCED UDS IN THE REPRESENTATIVE XP STRAINS MEASURED IN BOTH INSTITUTES

Complementation group	Strain	UV-induced UDS (% of normal rate)			
to the self actions	ing total agriculture	Rotterdam ^a	NIHb	s, it has not	
And pharman redu.	Control donors	100	100		
ะแล้ดเต่สุดต่อง คน มะ	XP25RO	<5	<2 <2	41 NOVE 301	- ទូវ១, ១៩៥ឆ្នាំ១
shorthed bear will y	XP1LO	<5	<2	Early William	
B-legelly the heightfollowin	XP11BE	4	4.8	As I see	er Degant
carea la such do de	XP4RO	10-15	12.9	Alaka I. Kilin	
Light of Artificial Labora	XP1BE		19.8	Arrive e i	
	XP2BE	24-27	13-1	8	
D	XP5BE	10	27.1		arsh discontro
E and a second second second	XP2RO	4060	60		

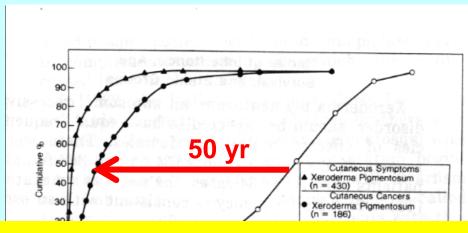
a Expressed as a percentage of the levels found in normal certs after a UV dose of 10 J/m².

Abbreviations: dine; NIH, Nat

Co-operation/ collaboration among laboratories studying DNA Repair

b Expressed as a percentage of the levels found in normal cells after a UV dose of 30 J/m².

Xeroderma Pigmentosum


Cutaneous, Ocular, and Neurologic Abnormalities in 830 Published Cases

Kenneth H. Kraemer, MD; Myung M. Lee; Joseph Scotto, MS

· Quantitative frequencies of clinical abnormalities in xeroderma pigmentosum were estimated by abstracting published descriptions of 830 patients in 297 articles obtained from a survey of the medical literature from 1874 to 1982. The median patient age was 12 years with nearly equal numbers of male and female patients. Cutaneous symptoms (sun sensitivity or freckling) had a median age of onset of between 1 and 2 years. Forty-five percent of the patients described had basal cell carcinoma or squamous cell carcinoma of the skin. The median age of first nonmelanoma skin cancer among patients with xeroderma pigmentosum was 8 years, more than 50 years less than that among patients with skin cancer in the United States. Melanomas were reported in 5% of

Veroderma pigmentosum is a rare genetic disease A with clinical and cellular hypersensitivity to ultraviolet radiation and defective DNA repair. Patients with xeroderma pigmentosum experience sun-induced cutaneous and ocular abnormalities. including neoplasia. Some patients have, in addition, progressive neurologic degeneration. Xeroderma pigmentosum, thus, serves as a model disorder linking defective DNA repair with clinical abnormalities and neoplasia. Quantitative information concerning the frequency of various clinical features of xeroderma pigmentosum would be useful in guiding patient management and in increasing understanding of the manifestations of defective DNA repair. To obtain

XP literature review – 830 patients

XP patients develop skin cancer 50 years earlier than in the general population

mental deterioration, hyporeflexia or areflexia, and progressive deafness in some patients in association with

of xeroderma pigmentosum was prepared to probe for 207 items of clinical or laboratory information. A separate dwarfism and immature sexual development. There was form was prepared for each patient mentioned in a report.

or pigmentation) was reported for 430 patients. Age at first skin cancer was reported for 186 patients and is compared with age

Strong evidence of the importance of **DNA Repair in PREVENTION of skin cancer**

Reprinted from the Archives of Dermatology August, 1994 Volume 130 Copyright 1994, American Medical Associatio

STUDY

The Role of Sunlight and DNA Repair in Melanoma and Nonmelanoma Skin Cancer

The Xeroderma Pigmentosum Paradigm

Kenneth H. Kraemer, MD; Myung-Moo Lee, MD; Alan D. Andrews, MD; W. Clark Lambert, MD, PhD

Background and Design: The frequency of melanoma and nonmelanoma skin cancer is increasing rapidly in the United States. However, the linkage of these cancers to sun exposure has been questioned because of differences in anatomic site distribution. To obtain insights into the development of these skin cancers, we examined reports of 132 patients with xeroderma pigmentosum (XP), an inherited cancer-prone, DNA repair—deficient disorder with

cancers (basal cell and squamous cell carcinomas), anterior eye cancers, and tongue cancers, but unlike that of internal neoplasms, was increased 1000-fold or more in patients with XP who were younger than 20 years. As in the general population, the anatomic distribution of melanomas was different from that of nonmelanomas in the patients with XP.

XP Registry- 132 patients

cell carcinoma, and 22% had melanoma. The frequency of melanomas, like the frequency of nonmelanoma skin

(Arch Dermatol. 1994;130:1018-1021)

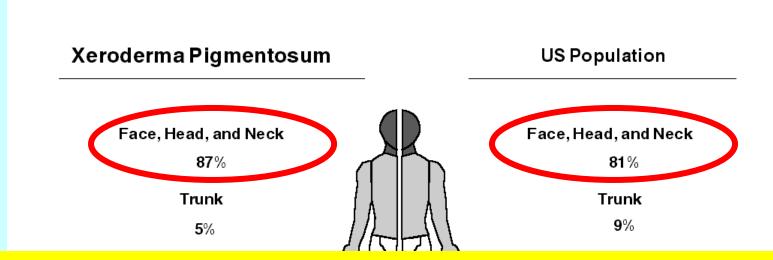
HE FREQUENCY of both melanoma and nonmelanoma skin cancer is increasing rapidly in the United States. 1-3 The degree of assogroup was young, with a median age of 16 years; 123 of the patients were younger than 40 years. Malignant skin neoplasms were reported in 93 (70%) of the patients. The median age for development of

70% had skin cancer – median age 8 years

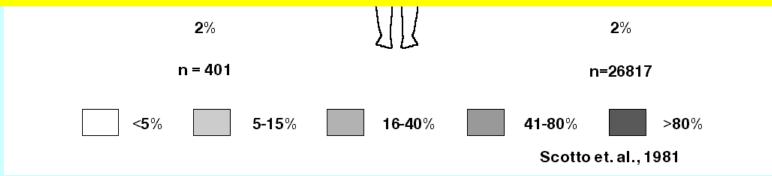
Dermatology, Columbia
University College of
Physicians and Surgeons, New
York, NY (Dr Andrews); and
the Departments of Laboratory
Medicine and Pathology and
Dermatology, University of
Medicine and Dentistry of New
Jersey, New Jersey Medical
School, Newark, NJ
(Dr Lambert). Dr Lee is
now with the Division of
Dermatology, Department of
Family Practice, US Air Force
Medical Corps, Yokota (Japan)
Air Base Hospital.

marked clinical and cellular UV hypersensitivity and defective DNA repair in all cells, develop numerous skin cancers. ⁴⁻⁷ In a search for insight into factors that are important in the development of melanoma and nonmelanoma skin cancers in humans, we analyzed information obtained from reports to the Xeroderma Pigmentosum Registry, Newark, NJ.

RESULTS

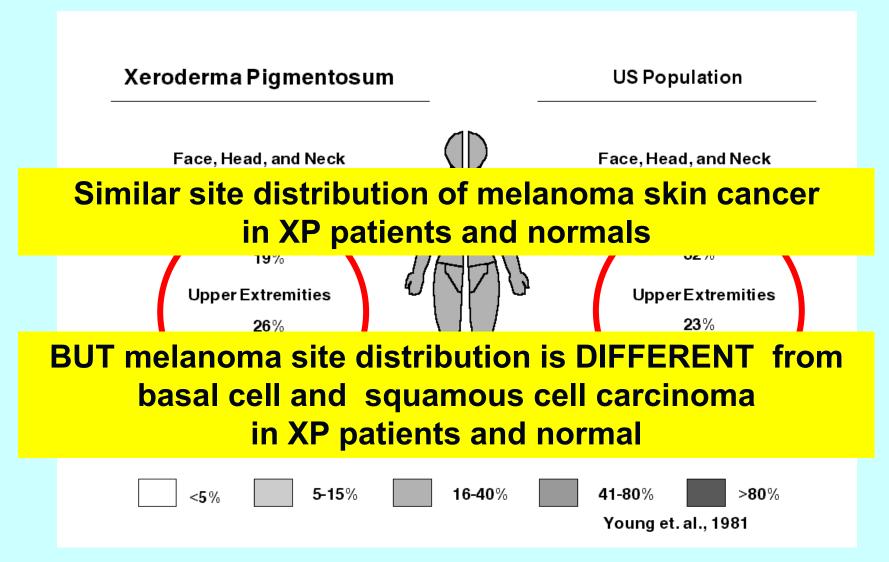

A total of 132 patients with XP were registered: 72 males and 60 females. The

tiple skin cancers: 73 patients had more than one cancer (20 of these had both basal cell carcinoma and melanoma), and 32 patients had more than 20 skin cancers each (based on the 82 reports in which the number of skin cancers was specified).


See Methods on next page

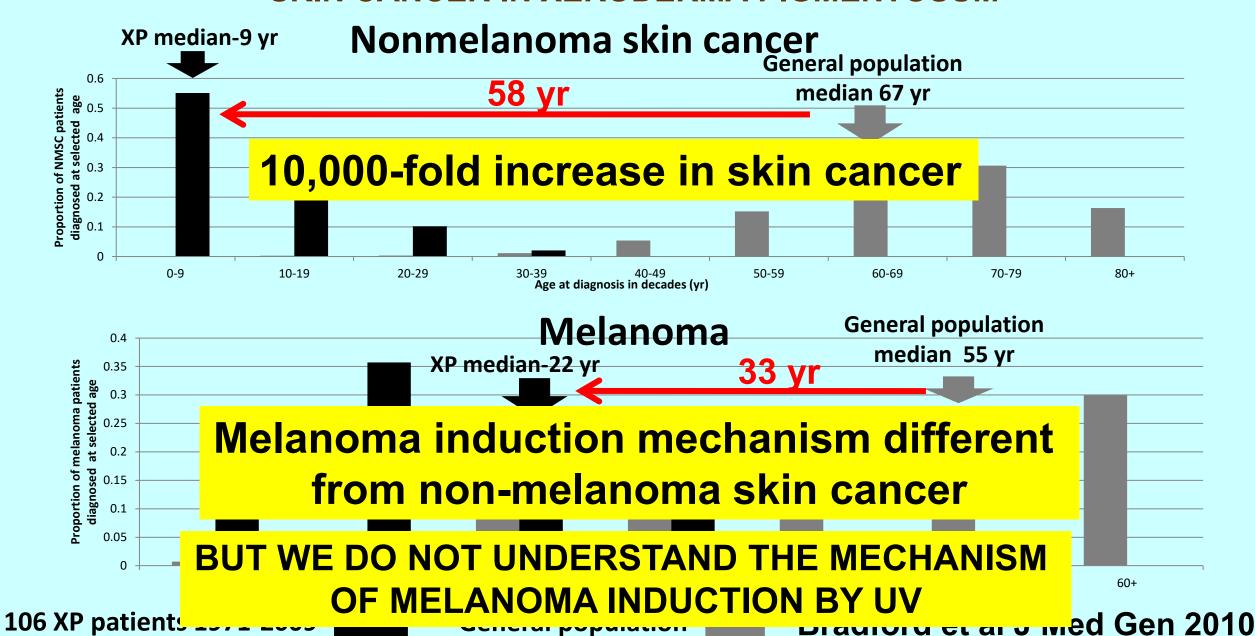
Arch Derm 1994

SITES OF BASAL CELL CARCINOMA AND SQUAMOUS CELL CARCINOMA IN XP AND NORMALS



Similar site distribution of non-melanoma skin cancer in XP patients and normals

Arch Dermatol 130: 1018 (1994)


SITES OF MELANOMA IN XP AND NORMALS

Arch Dermatol 130:1018 (1994)

EARLY AGE OF ONSET OF

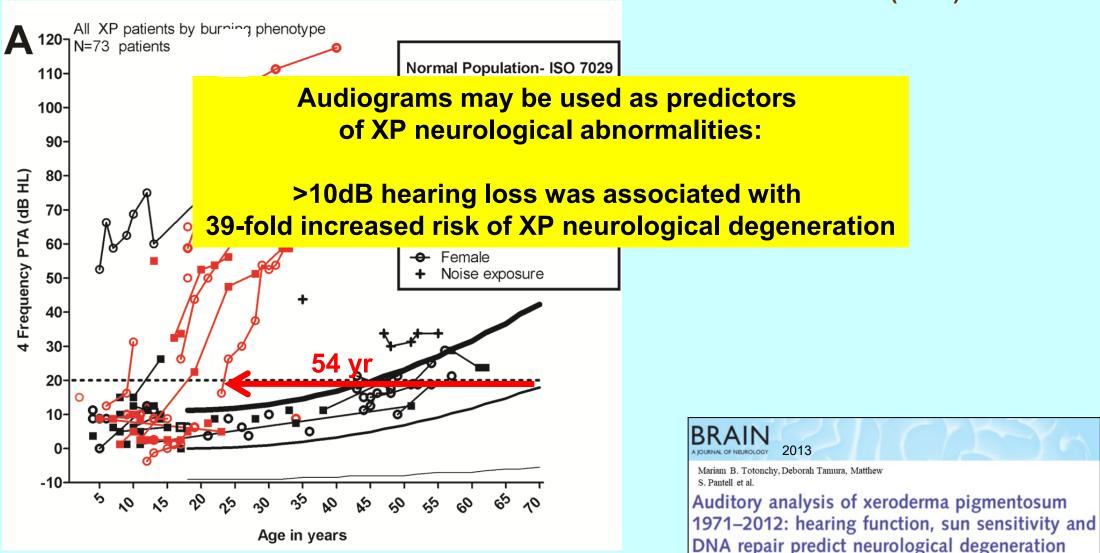
SKIN CANCER IN XERODERMA PIGMENTOSUM

PHOTOSENSITIVE AND NON-PHOTOSENSITIVE XP PATIENTS

XP-D Age 9 mo

XP-C Age 2 yr

sensitive


About 50% of XP patients have acute burning on minimal sun exposure

XP-A Age 35 yr photosensitive

XP-C Age 23 yr Non-photosensitive

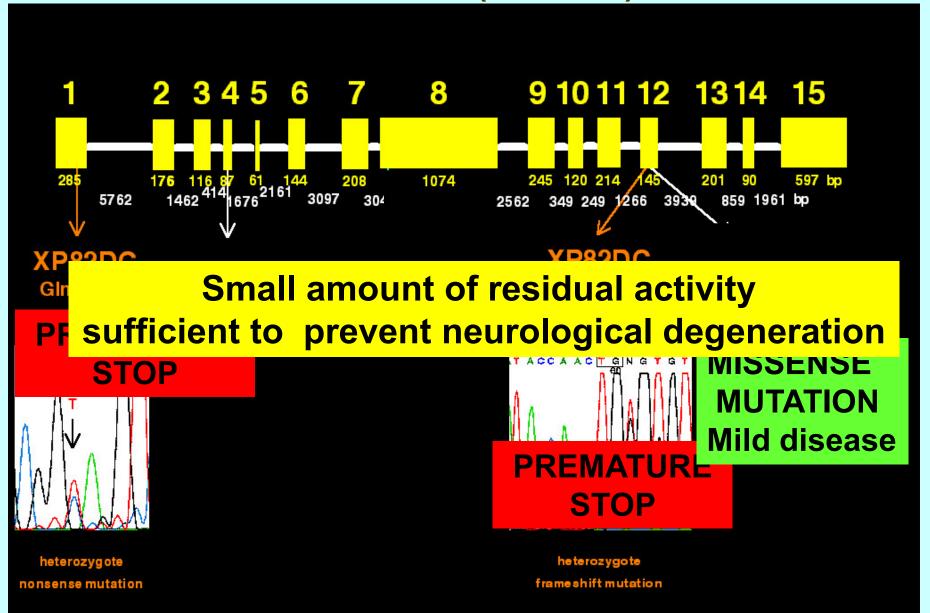
40 YEARS FOLLOW-UP OF XERODERMA PIGMENTOSUM AT NIH HEARING LOSS AND ACUTE BURNING ON MINIMAL SUN EXPOSURE ARE PREDICTORS OF PROGRESSIVE NEUROLOGICAL DEGENERATION (n=73)

Totonchy DiGiovanna.. Kraemer Brain 2013

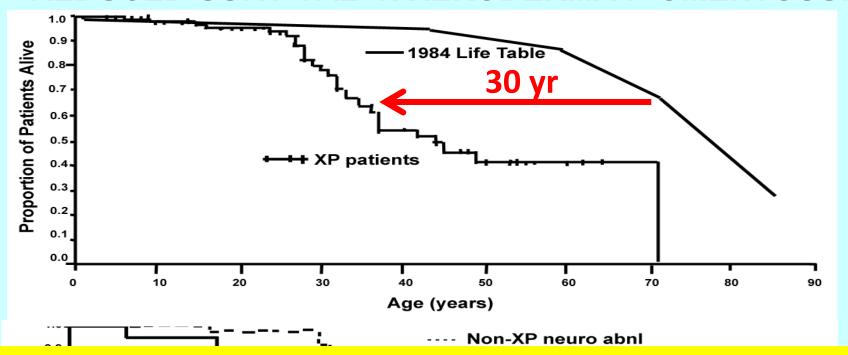
40 YEARS FOLLOW-UP OF XERODERMA PIGMENTOSUM AT NIH PROGRESSIVE NEURODEGENERATION with BRAIN ATROPHY

XP-G PATIENTS – SEVERE and MILD DISEASE

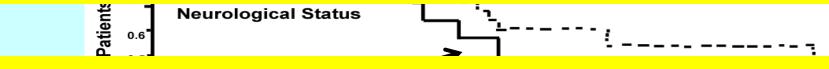
XP/CS Died age 6 y/o



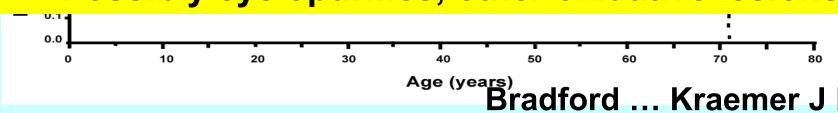
XP82DC - 3 y/o


Emmert et al J Invest Dermatol (2002)

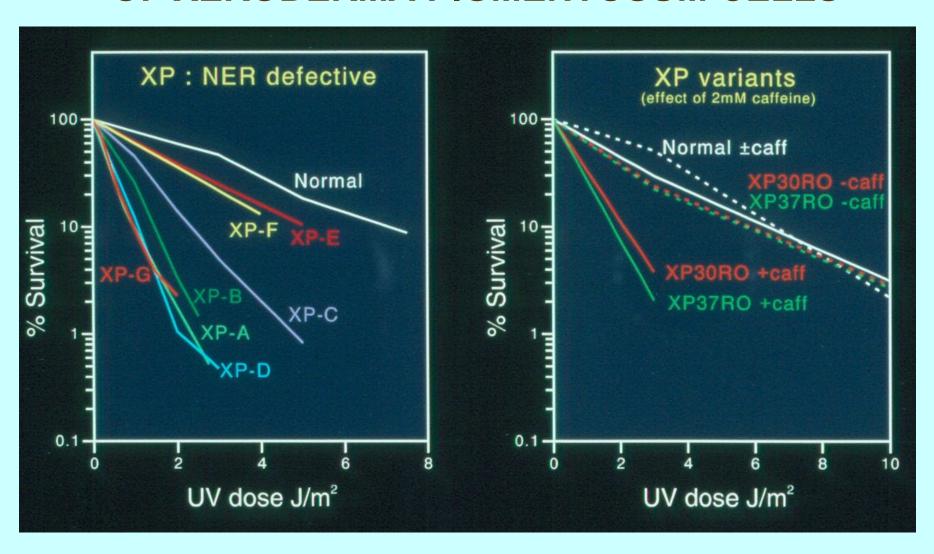
MUTATIONS IN XPG (ERCC5) GENE



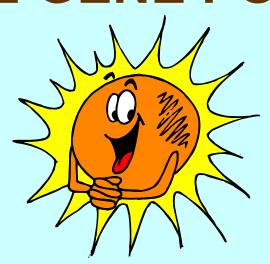
Emmert et al J Invest Dermatol (2002)

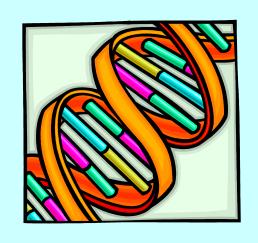

40 YEARS FOLLOW-UP OF XERODERMA PIGMENTOSUM AT NIH REDUCED SURVIVAL IN XERODERMA PIGMENTOSUM

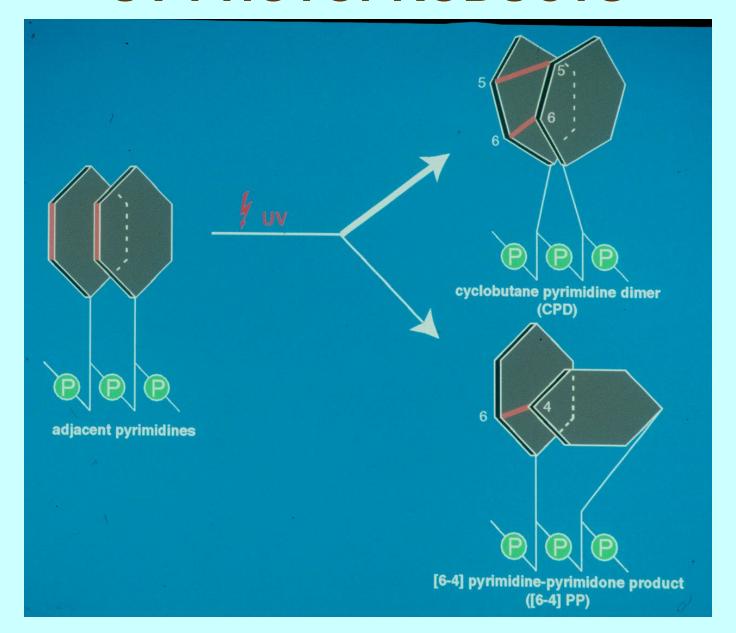
XP patients with neurological abnormalities have lower survival

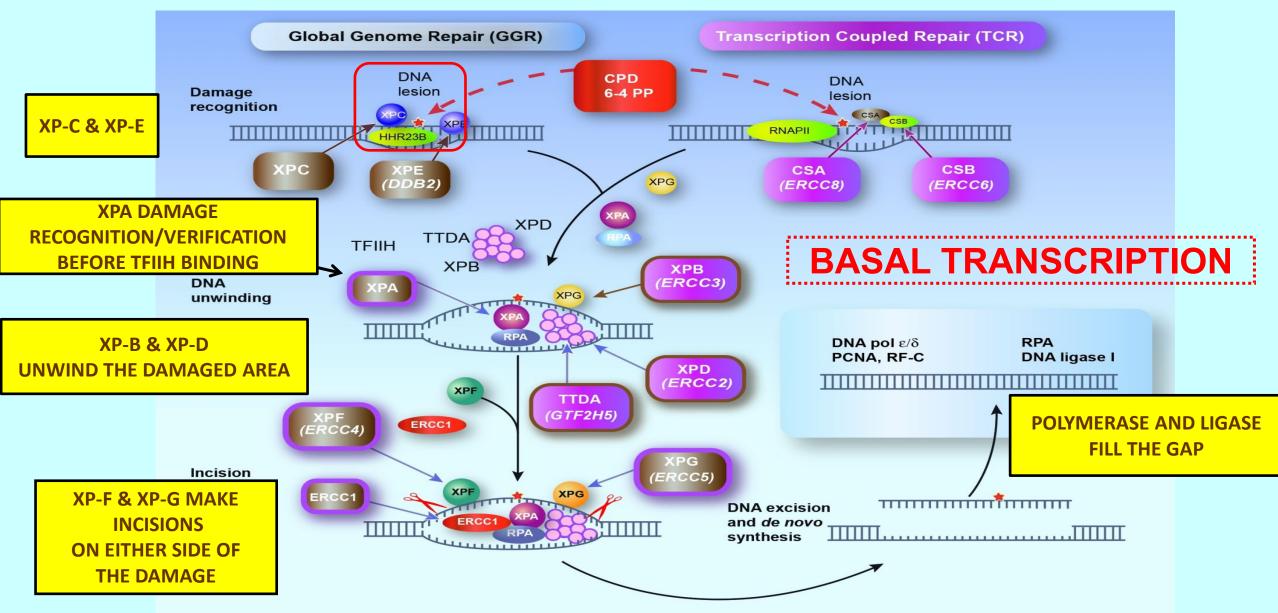


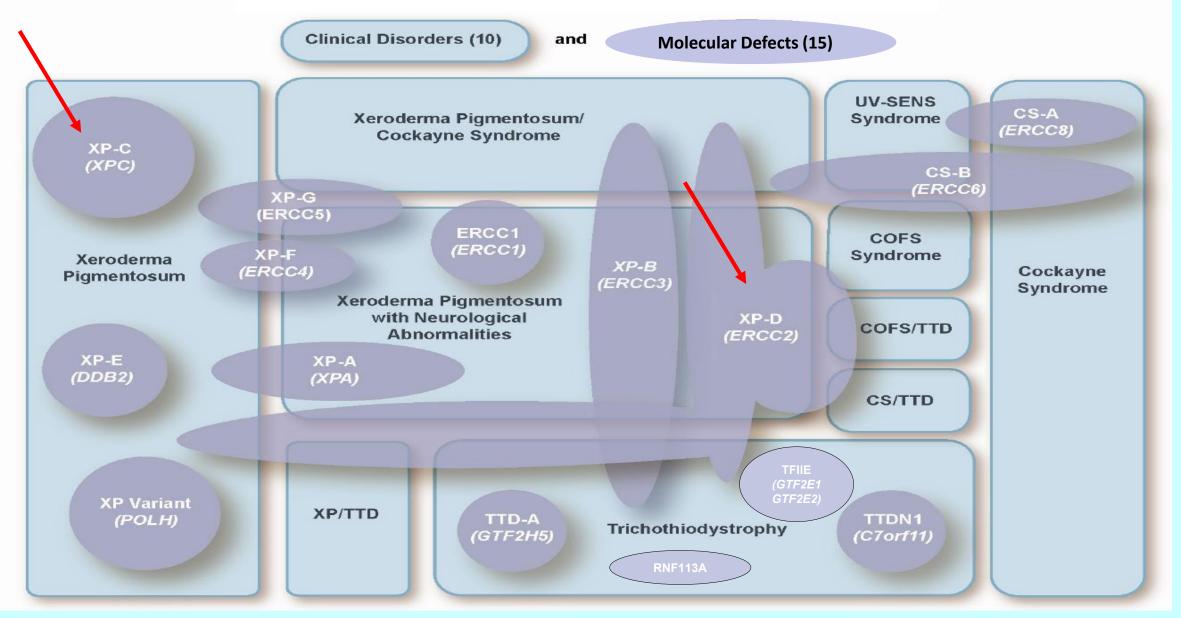
BUT WE DO NOT KNOW THE CAUSE OF THE NEUROLOGICAL DAMAGE - Possibly cyclopurines, other oxidative lesions?

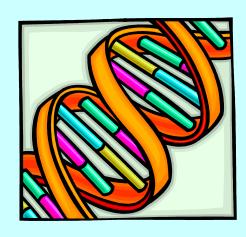

.. Kraemer J Med Gen 2010


UV HYPERSENSITIVITY OF XERODERMA PIGMENTOSUM CELLS


DNA REPAIR – THE LIFEGUARD OF THE GENE POOL




UV PHOTOPRODUCTS


NUCLEOTIDE EXCISION REPAIR PATHWAY

DNA REPAIR DISORDERS

DNA REPAIR IN INTERNAL CANCERS AND AGING

INTERNAL CANCERS IN XPC PATIENTS

XP3BE LUNG CANCER

XP23BE
ASTROCYTOMA
SPINAL CORD

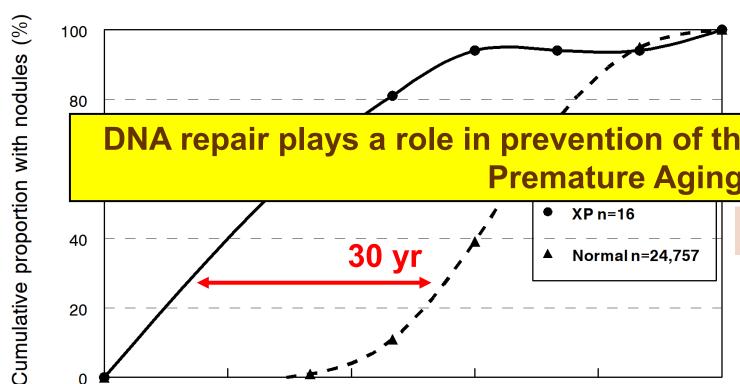
XP24BE GLIOMA BRAIN

MIXED PHENOTYPE ACUTE LEUKEMIA 19 y/o XP-C patient from Morocco

40+ skin cancers; multinodular thyroid; North African XPC founder mutation

18% blast cells: B/myeloid, T/B/myeloid, T/B blasts Hematologists, NHLBI – Sawa Ito, Karolyn Oetjen 9 oncogenic mutations **CLONE P4** Sikandar 0.40 Khan **Deficient DNA repair leads to** tologic mutations Maxwell Lee Single cell RNA sequencing **Digital droplet PCR shows** shows differential clonal **Multiple oncogenic mutations** expression Howard Yang Unpublished TSNE-1

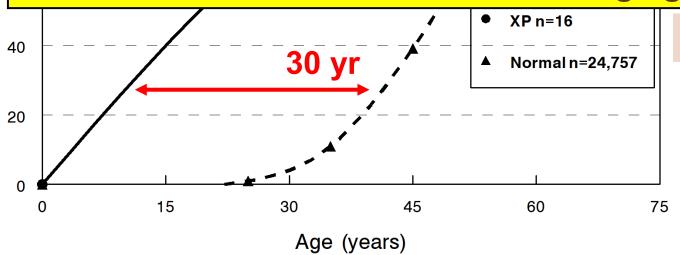
HEMATOLOGIC NEOPLASMS IN XERODERMA PIGMENTOSUM


	Sex/Age	Complementation Group	Mutation	Outcome			
MDS/AML	M/34 yr.	С	c.1643-1644delTG c.1103 1104delAA	Died 38 yr AML			
DNA repair plays a role in prevention of hematologic neoplasms splant							
Diffuse Large B Cell Lymphoma	M/29 yr.	С	c.1643-1644delTG	Died 30 yr. – disease progression			
MPAL	F/19 yr.	С	c.1643-1644delTG	Alive 20 yr chemotherapy			

Mutations in Red are a common founder mutation.

MDS – myelodysplastic syndrome; AML – acute myeloid leukemia; MPAL – mixed phenotype acute leukemia

Question: Why is this North African founder mutation associated with hematologic neoplasms? - 13/161 (8%) of patients with homozygous founder mutation had MDS, AML or T-ALL -Sarasin et al Blood (2019)


EARLY AGE OF THYROID NODULES IN XERODERMA PIGMENTOSUM PATIENTS

Radiology CC -Jamie Marko

DNA repair plays a role in prevention of thyroid nodules and cancer **Premature Aging**

2 XP patients had thyroid cancer

Thyroid cancer TFG-NTRK1 fusion mutation

lournal of Endocrinological Investigation https://doi.org/10.1007/s40618-020-01451-x					
ORIGINAL ARTICLE					
	Creach for squaleter				
Thyroid nodules in xeroderma pigmentosum patients: a feature of premature aging					
5. D. Kouatcheu ^{1,3} · J. Marko ³ · D. Tamura ¹ · S. G. Khan ¹ · C. R. Lee ⁴ · J. J. DiGiovanna ¹ · K. H. Kraemer ¹					
leceived: 31 August 2020 / Accepted: 12 October 2020 Ditalian Society of Endocrinology (SIE) 2020					

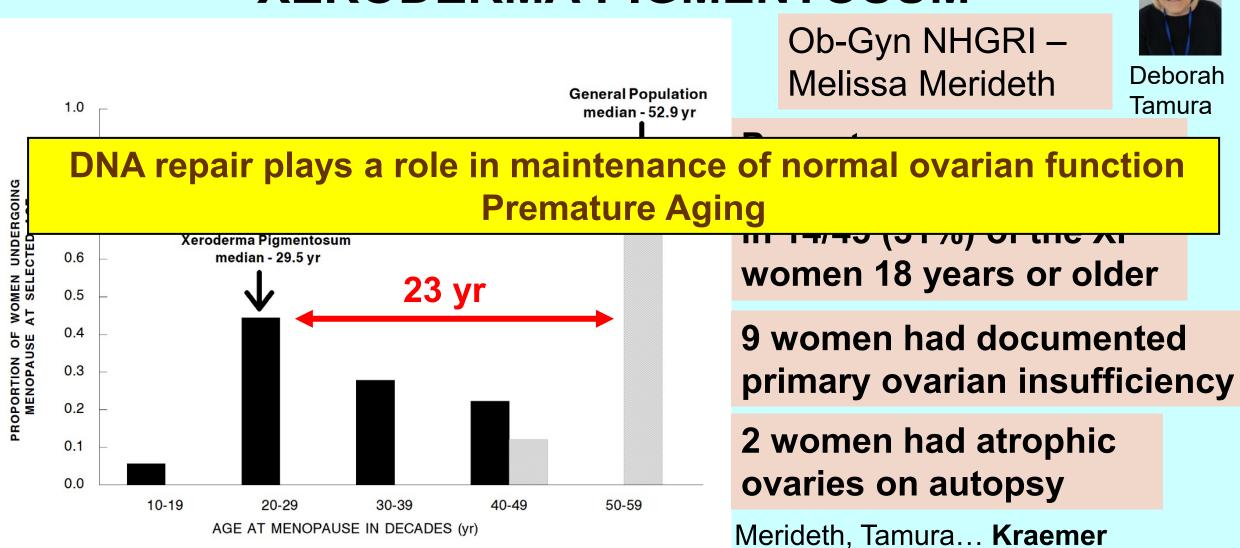
Nikolaev et al.

Orphanet Journal of Rare Diseases (2022) 17:104

https://doi.org/10.1186/s13023-022-02203-1

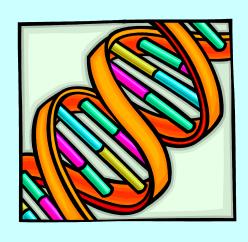
Orphanet Journal of Rare Diseases

RESEARCH Open Access

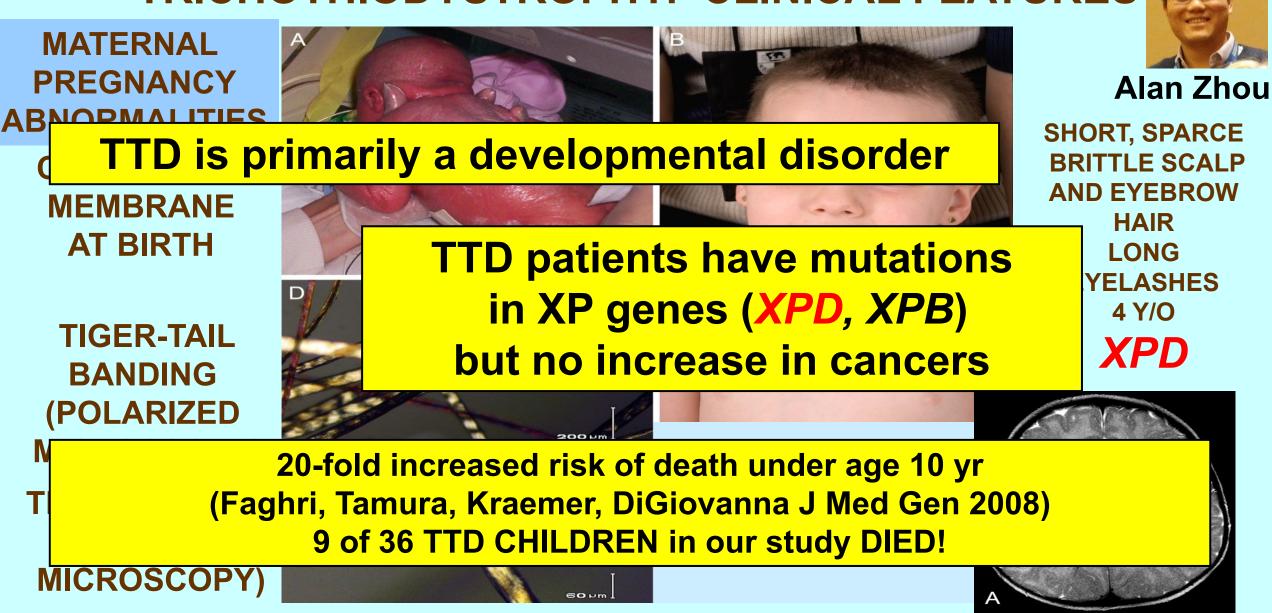

Increased risk of internal tumors in DNA repair-deficient xeroderma pigmentosum patients: analysis of four international cohorts

Sergey Nikolaev^{1*}, Andrey A. Yurchenko¹ and Alain Sarasin^{2*}

2022

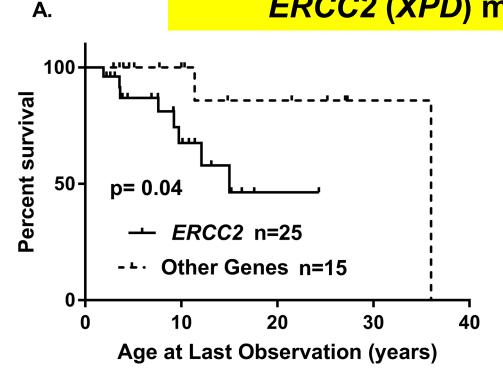

- 34 fold increased risk for all internal tumors
- CNS tumors, hematologic cancer most commonly seen

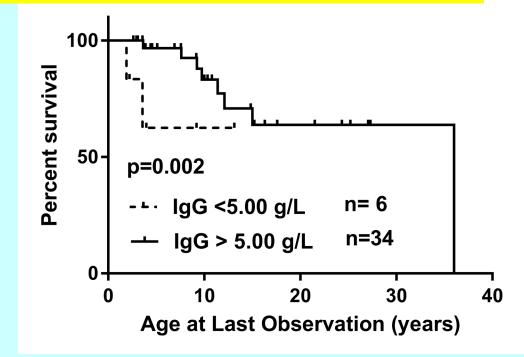
PREMATURE MENOPAUSE IN WOMEN WITH XERODERMA PIGMENTOSUM



Obstetr Gynecology (2019)

TRICHOTHIODYSTROPHY (TTD) DNA REPAIR/ TRANSCRIPTION GENES

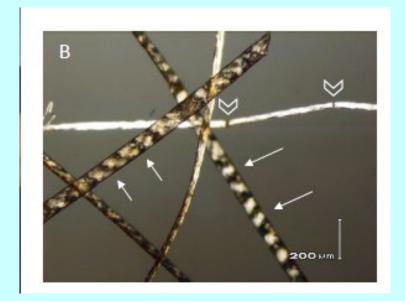

TRICHOTHIODYSTROPHY: CLINICAL FEATURES



Zhou ... Kraemer JAAD 2010

DECREASED SURVIVAL OF TTD PATIENTS WITH *ERCC2/XPD* MUTATIONS OR LOW IgG

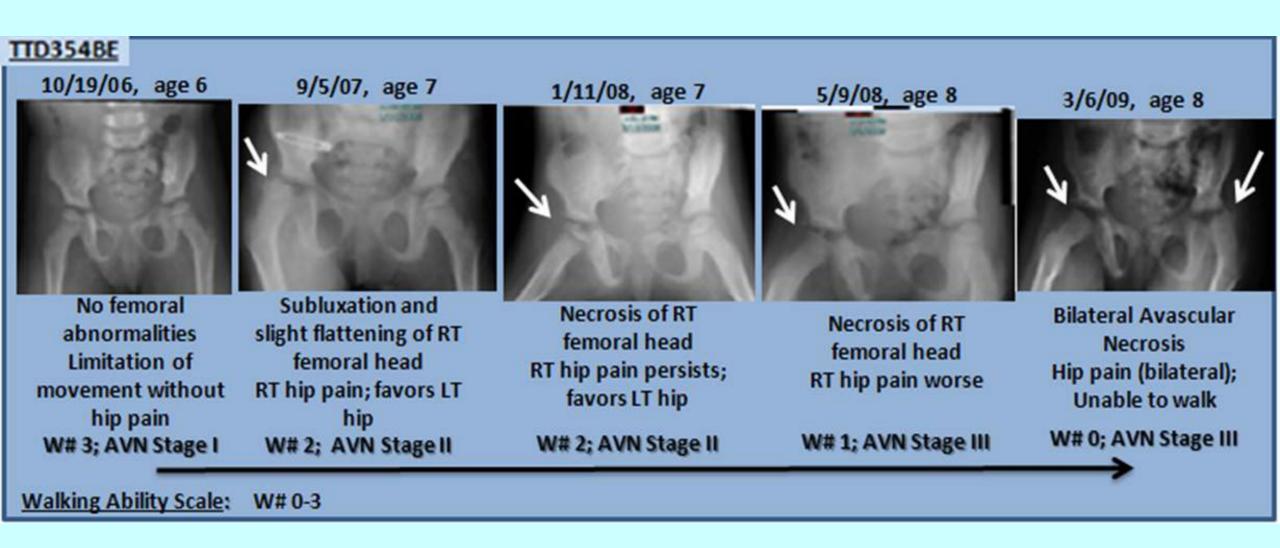
Reduced survival of trichothiodystrophy patients with ERCC2 (XPD) mutations or immune deficiency

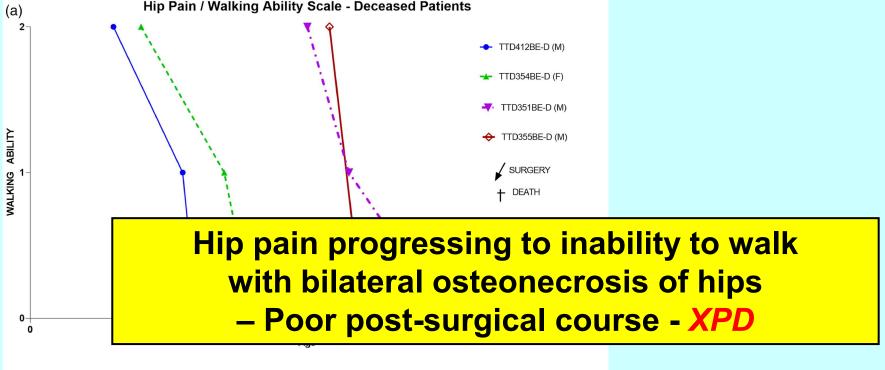


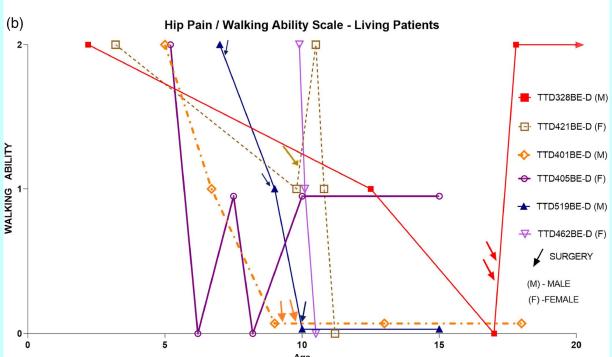
ORIGINAL ARTICLE

Debilitating hip degeneration in trichothiodystrophy: Association with ERCC2/XPD mutations, osteosclerosis, osteopenia, coxa valga, contractures, and osteonecrosis

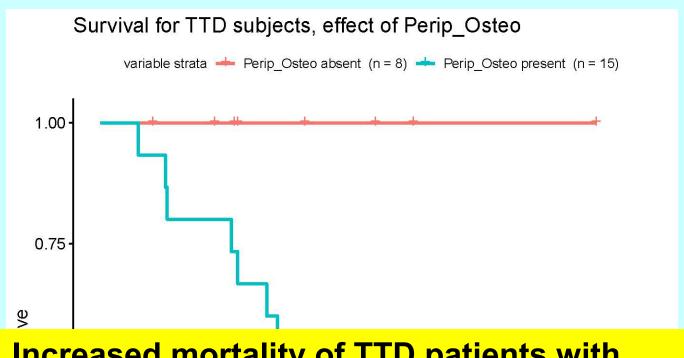
```
John J. DiGiovanna<sup>1</sup> | Grant Randall<sup>1,2</sup> | Alexandra Edelman<sup>1</sup> | Rina Allawh<sup>1</sup> |
Michael Xiong<sup>1</sup> | Deborah Tamura<sup>1</sup> | Sikandar G. Khan<sup>1</sup> | Elizabeth R. H. Rizza<sup>1</sup> |
James C. Reynolds<sup>3</sup> | Scott M. Paul<sup>4</sup> | Suvimol C. Hill<sup>5</sup> | Kenneth H. Kraemer<sup>1</sup> ©
```



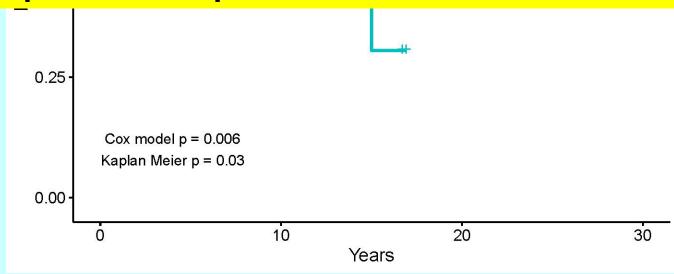

John DiGiovanna M.D. **Senior Research Physician**



PROGRESSIVE AVASCULAR NECROSIS OF HIPS IN YOUNG TRICHOTHIODYSTROPHY PATIENT



DiGiovanna et al Am J Med Gen 2022

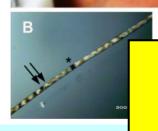


DiGiovanna et al Am J Med Gen 2022

Increased mortality of TTD patients with Peripheral osteopenia – all had XPD mutations

PRENATAL DIAGNOSIS Prenat Diagn (2011) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pd.2829

High-risk pregnancy and neonatal complications in the DNA repair and transcription disorder trichothiodystrophy: report of 27 affected pregnancies


Tamura

Deborah Tamura Molisso Moridoth^{2,3} John J. DiCiovanno Visolong Zhou^{1,4} Margaret A. Tucker⁵

81% of mothers with XPD mutations carrying a TTD fetus have pregnancy complications

> **Pre-term delivery** Pre-eclamnsia

No mothers with XPD mutations carrying a XP fetus have pregnancy complications

Alisa M. Goldstei

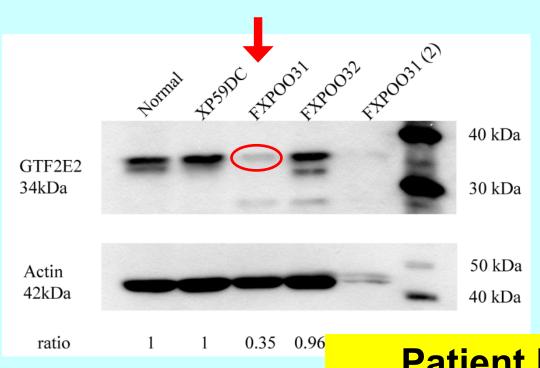
Roxana Moslehi⁷

DNA repair/transcription genes play a role in normal fetal development

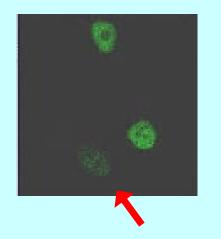
TTD PATIENT: 10 Y/O INDIAN MALE

Brittle hair, sparse eyebrows Mild nystagmus, micrognathia

Ichthyosis involving the trunk, back, scalp and legs



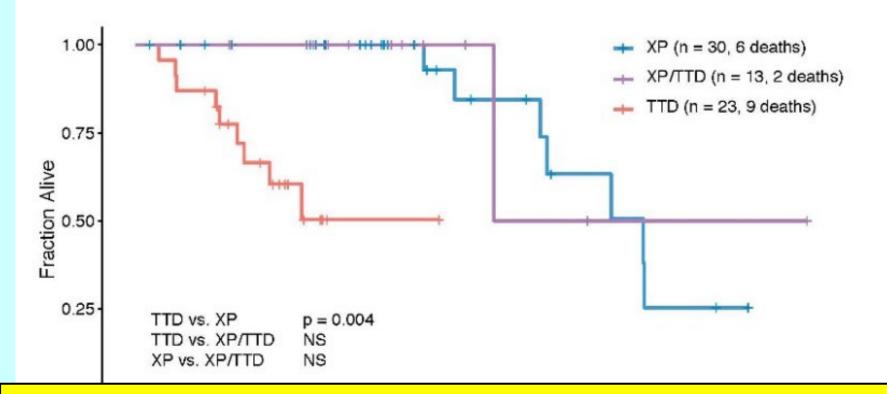
Tiger-tail banding under polarized light microscopy


Hair shaft abnormalities (fracturing; irregular contour)

GTF2E2 MUTATION

- Reduced TFIIE protein
- Normal post-UV cell survival
- Normal level of XPB, XPD
- Normal post-UV localization of NER proteins

Patient has reduced GTF2E2 protein but normal nucleotide excision repair "Pure" transcription defect



Kuschal et al Am J Human Genetics 2016

DEEP PHENOTYPING with HIERARCHICAL CLUSTERING of CLINICAL FEATURES

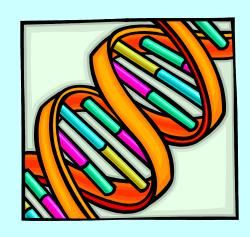
ASSISTS IN PROGNOSIS

66 patients with *ERCC2 (XPD)* mutations: **30 XP, 13 XP/TTD, 23 TTD**

TTD patients have a greater reduction in survival than the XP or XP/TTD patients

TTDN1
patients have
distinct
phenotype
JID 2014

Elizabeth Heller


Jennifer Pugh

George Nelson

Unpublished

DNA REPAIR GENES IN GENERAL POPULATION MOLECULAR EPIDEMIOLOGY

Available online at www.sciencedirect.com

Mutation Research 601 (2006) 171-178

www.elsevier.com/locate/molmut Community address: www.elsevier.com/locate/mutres

Heterozygous individuals bearing a founder mutation in the *XPA* DNA repair gene comprise nearly 1% of the Japanese population

Yuko Hirai^{a,*}, Yoshiaki Kodama^a, Shin-Ichi Moriwaki^b, Asao Noda^a, Harry M. Cullings^c, Donald G. MacPhee^d, Kazunori Kodama^e, Kiyohiko Mabuchi ^f, Kenneth H. Kraemer^g, Charles E. Land ^f, Nori Nakamura^a

1 million carriers of the XPA mutation in Japan

^v Department of Statistics, Kadiation Effects Kesearch Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan ^d Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan

Cancer risk of XPA heterozygotes is not known

USE OF **BIG DATA** TO ESTIMATE PREVALENCE OF DEFECTIVE DNA REPAIR VARIANTS IN THE US POPULATION

Question: Do databases of exome sequences reliably correlate with the prevalence of individuals with defective DNA repair?

Table 2. Higher Frequency of XPF (ERCC4) and XPC Mutations in Genetic Databases Compared With Phenotypic XP Observed in the United States

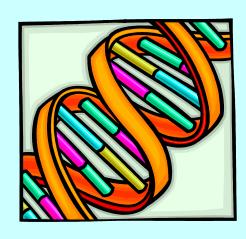
Complementation Group (Gene)	Mutation Associated With XP	Total No. of Alleles Sequenced	No. of Individuals	No. of Alleles	% of Alleles Reported in Database (q)	Estimated % of Homozygous Affected Individuals (q²) ^a	Total No. of Genetic Homozygotes Reported in Database	Total No. of Genetic Homozygotes Estimated in Database ^a	rs No. ^b
gnomAD									
XPF (ERCC4)	p.P379S	276 560	138 280	112	0.41	1.65×10^{-5}	4	2.28	rs1799802
XPF (FRCC4)	p.R799W	277 034	138 517	124	0.04	2.00×10^{-7}	0	0.03	rs121913049
XPC	p.P334H	274 914	137 457	838	0.30	9.29×10^{-6}	7	1.28	rs74737358

Large exome databases revealed high frequencies of 2 DNA repair gene mutations associated with xeroderma pigmentosum

Jennifer Pugh

Pugh ... Kraemer JAMA Derm 2018

PREDICTED FREQUENCY OF XP IN THE UNITED STATES


US estimations									
XPF (ERCC4)	p.P379S	NA	$323100000^{\rm d}$	NA	0.41 ^e	1.65×10^{-5}	3 ^f	5298 ^g	rs1799802
XPF (ERCC4)	p.R799W	NA	323 100 000 ^d	NA	0.04 ^e	2.00×10^{-7}	11 ^f	66 ^g	rs121913049
XPC	p.P334H	NA	323 100 000 ^d	NA	0.30 ^e	9.29×10^{-6}	1^{f}	3002 ^g	rs74737358
65 XP mutations	h	NA	NA	NA	1.13 ^e	2.81×10^{-5}	300 (US only)) ^f 9007 ^g	NA

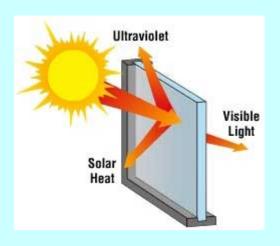
These frequencies estimate the presence of more than 8,000 people with xeroderma pigmentosum in the US who are homozygous for these mutations, yet only 4 individuals were clinically identified.

CONCLUSION: Discrepancy between large number of XP genotypes in database and known number of XP patients.

HYPOTHESIS: Unsuspected mutations in known skin cancer genes may be responsible for some of the high frequency of skin cancers in the general population.

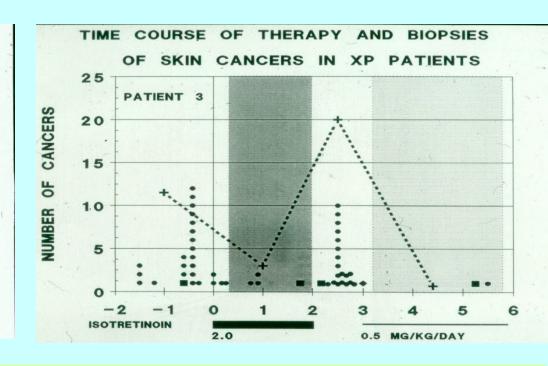
MANAGEMENT OF PATIENTS WITH XERODERMA PIGMENTOSUM

XERODERMA PIGMENTOSUM SUN PROTECTION



"Window film screens out almost 100% of UV rays, without reducing visibility."

-The Skin Cancer Foundation



ORAL ISOTRETINOIN PREVENTS NEW SKIN CANCERS IN XERODERMA PIGMENTOSUM

Table 1. Number of Skin Cancers in Patients with Xeroderma Pigmentosum before, during, and after Therapy with Oral Isotretinoin (2 mg per Kilogram per Day).

		Before Treatment*	During Treatment*	AFTER TREATMENT†
PATIENT	AGE/SEX	(2 YR)	(2 YR)	(12–14 Mo)
		n	umber (number per ye	ear)
1	19/F	43 (21.5)	3 (1.5)	18 (18.0)
2	12/F	37 (18.5)	4 (2.0)	29 (38.7)‡
3	17/M	23 (11.5)	6 (3.0)	20 (20.0)
4	39/M	10 (5.0)	3 (1.5)	4 (3.4)
5	10/M	8 (4.0)	9 (4.5)	10 (10.0)

Oral retinoid effective in PREVENTION of new cancers in XP patients

Kraemer et al NEJM 315: 1615 (1988)

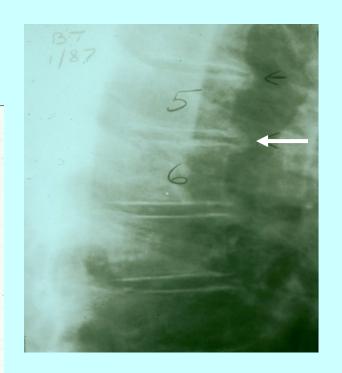

SIDE EFFECTS OF ORAL ISOTRETINOIN FOR XERODERMA PIGMENTOSUM

Table 2. Frequency of Side Effects Observed in Seven Patients with Xeroderma Pigmentosum during Treatment with Oral Isotretinoin (2 mg per Kilogram per Day).

SIDE EFFECT	No. of Patients Affected
Dry skin	7 -
Cheilitis	7
Blepharitis or Conjunctivitis	7
Lightening or disappearance of freckles	6
Increased serum triglycerides	6
Abnormal liver-function tests	4
Arthralgias	4
Staphylococcal infection (perioral)	3
Multiple pyogenic granulomas	2
Skeletal toxicity	2

Multiple side effects by use of oral retinoid in XP patients

Kraemer et al NEJM 315:1615 (1988)

LONG TERM SUN PROTECTION IN XERODERMA PIGMENTOSUM

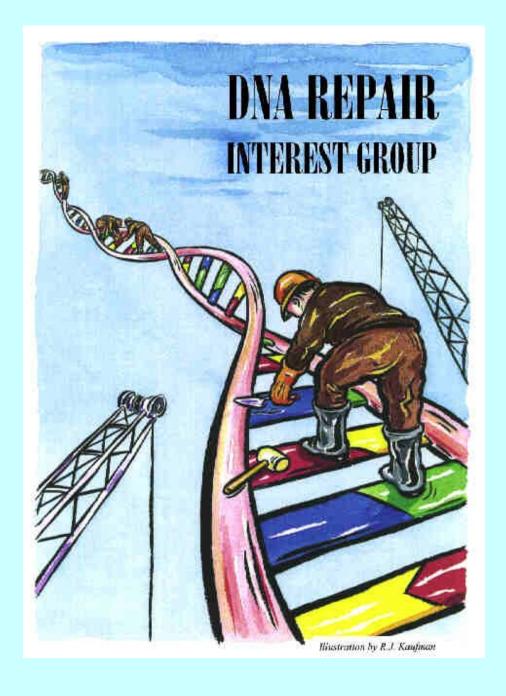
XP34BE XP35BE 5 yr 1 yr Living in Denver, CO

XPD family

Moved to Seattle, WA

XP35BE XP34BE

19 yr 23 yr


Long Time Partners

OUR PATIENTS AND THEIR FAMILIES

STAFF and COLLABORATORS

KRAEMER LAB	MEDICAL STUDENTS	COLLABORATORS					
Sikandar Khan	Christine Liang	NIH- CLINICAL	NIH- LAB	FOREIGN			
Christiane Kuschal	Andrea Morris	Tom Hornyak	Paul Meltzer- NCI	Shin-Ichi Moriwaki - Japan			
Taro Masaki	Tara Rao	Nicholas Patronas	Tom Schneider - NCI	Steffen Emmert – Germany			
Kyoko Imoto	Salma Faghri	Suvimol Hill	Vilhelm Bohr - NIA	Hanoch Slor – Israel			
Hiroki Inui	Jared Jagdeo	Mark Raffeld	Carl Baker - NCI	Engin Gozukara - Turkey			
Takahiro Ueda	Priya Mahindra	Richard Lee	Jesssie Chen - NCI	Miria Stefanini – Italy			
Kyu Seon Oh	Mansi Sarihan	Brian Brooks	Xiaoling Luo - NCI	Koos Jaspers – Netherlands			
Seiji Takeuchi	Xiaolong Zhou	Carmen Brewer	USA-not NIH	Robert Sarkany - UK			
Yun Wang	Michael Xiong	Melissa Merideth	Thomas Ruenger- Boston U	Alan Lehmann - UK			
Xiaohui (Jane) Tan	Mariam Totonchy	Colleen Hadigan	Thomas Darling – USUHS	Kiyoji Tanaka – Japan			
Jennifer Boyle	Rina Allawh	NCI - EPI	Amy Paller - NW	Chikako Nishigori - Japan			
Ryusuke Ono	Alexandra Barsell	Margaret Tucker	Vera Price - USF	Yuko Hirai - Japan			
CLINICAL	Elizabeth Heller	Alisa Goldstein	Richard Gatti -UCLA	Jean-Marc Egly - France			
John DiGiovanna	Melissa Levoska	Porcia Bradford		Alain Sarasin - France			
Deborah Tamura	Grant Randall	Jennifer Pugh					

- Co-chair with Dr. V. Bohr, NIA.
- Established 1985
- Monthly videoconferences
- 8 linked sites across US (now unlimited virtual lectures)
- >250 lectures archived at http://videocast.nih.gov
- e-mail list: >1200 subscribers worldwide
- kraemerk@nih.gov

